
AD-Ali53 989 SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES VOLUME 2 1/2
SOFTWARE QUALITY SP..(U) BOOING AEROSPACE CO SEATTLE MA
T P BOWdEN ET AL. FEB 85 D182-ii678-2

UNCLASSIFIED RADCTR 85 37 VOL 2 F386282-C-8i37 F/G 9/2 M

EEmhohEohEoiE

1..

L', 16 m.2.0.

111"1 = W 1 226

MICROCOPY RESOLUTION TEST CHART
"

NATIONAL BUREAU OF STANDARDS-1963-A
,

* %

MICROCOPY,. - - - . .
- - . . - --
" R N T T C

', :-" ": ' , - '.." ,", '. '. '. , ' '. , .,- .". ., , , ', .." .. ." .' . .r ,, NATIONAL " " .BUREAU OF. . " ST A N O A R OS-1.963.-A .,' ' " '.", , ' ".; ,

p....

4.

AD-A153 989
~ ..- ~ -

1.' w

~ -

4-

,~ ~

..- ~* :~
~

7~
~ ,~,

'~ 4 Boeing

~
- ~ p.

* =
S ~ I4j~2

~W -

A'

e

~

~

~ j..

.4

4.

.4

K.

-. . . . - -

- ,s.. .. '.~

-. ~-~.-*-p.- .*-*- * - .'.

- , . - - -2 . a ;tA..a .M fLa aA A ..P ~A . .. k~ ... aaw.t..... ZAa 2..

This report has been reviewed by the RADC Public Affairs Office (PA) and
In releasable to the National Technical Information Service (NTIS). At NTISit will be releasable to the general public, including foreign nations.

RADC-TR-85-37, Volume II (of three) has been reviewed 'nd is approved
for publication.

APPROVED:

ROGER B. PANARA
Project Engineer

i

APPROVED:

RAYMOND P. URTZ, JR.
Technical Director
Command & Control Division

FOR THE COMMANDER:

DONALD A. BRANTINGUAM
Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,

* please notify RADC (COEE) Grifflss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

-o" . .. * *-

. ..-

CTA. . TI=T I"I-.... j. .

UNrLA.qATVTWT)
SECURITY CLASSIFICATION OF THIS PAGE Ik

REPORT DOCUMENTATION PAGE __

,,. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
,, UNCLAS S IFIED N/A jS

2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILAGILITY OF REPORT

N/A Approved for public release; distribution

2b. DECLASSIF ICATION/OOWNGRAOING SCHEDULE unlimited.

C PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

182-11678-2 RADC-TR-85-37, Vol II (of three)

6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Boeing Aerospace Company (Ifpp, ,e Rome Air Development Center (COEE)

6c. ADORESS (CiY. State and ZIP C0d.) 7b. ADDRESS (City. State end ZIP Codej

P.O. Box 3999 Griffiss AFB NY 13441-5700
Seattle WA 98124

Uk NAME OF FUNDING/PONSORING .OFFICE SYMBOL . PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Rome Air Development Center COEE F30602-82-C-0137

6c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNOING NOS.

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO. NO.

63728F 2527 03 05

1. TIL IcuePcuny m iiain

SPECIFICATION OF SOFTWARE QUALITY ATTRIBUTES Software Quality Specification Guidebook

12 PERSONAL AUTHOR(S)
Thomas P. Bowen, Gary B. Wigle, Jay T. Tsai

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. AO.. Day) 15. PAGE COUNT
Final FROM O oOt84 February 1985 156

16. SUPPLEMENTARY NOTATION

N/A

17 COSATI CODES IS. SUBJECT TERMS (Continue on retere if necemry and identify by block number)

FIELD GROU I Su. GR. Software Quality
09 02 Software Quality Metrics

19. ABSTRACT (Continue on wtper m if necesiary and Identify by block numbe)

Volume I (of three) describes the results and presents recommendations for integrating the
RADC developed software quality metrics technology into the Air Force software acquisition
management process and for changing Air Force acquisition documentation. In addition,
changes to the baseline software quality framework are presented and features of a proposed
specification methodology are summarized. Terminology and life cycle phases are consistent
with the December 1983 draft of the DOD-STD-SDS, Defense System Software Development.

Volume 11 (of three) describes how the software acquisition manager specifies software
quality requirements, consistent with needs. Factor interrelationships, tradeoff among

% factor quality levels in terms of relative costs and an example for a command and control
application are described. Procedures for assessing compliance with the specified require-
ments based on an analysis of data collected using procedures described in Volume III are
included.

20. DISTRIBUTION/AVAILAGILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. OTIC USERS 0 UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c OFFICE SYMBOL
(include Area Code I

Roger B. Panara (315) 330- 4 6 54 RADC (COEE)

DO FORM 1473.83 APR EDITION OP I JAN 73 IS OBSOLETE. OFASTIHSPDAGE

SECURITY CLASIFICATION OF THIS PAGE.

%"

• "°N,.% .
,%n . . . , , %. ,. .- .. . ,- ,r . .- ,-- - 'I*, - ,%-L", 'WL "-* " ''*' '*% '','' . ' ' -.

-
"" *' " "" ,

UNCLASSIFIED
SaCUIITY CLASSIPICATIOt OP THIS PAGE

Volume III (of three) describes procedures and techniques for evaluating achieved quality
levels. Worksheets for use in metric data collection by software life cycle phases and
scoresheets for scoring each factor are provided.

DTICSELECTE! 4

MAY 2 2 W5s

Accession For

NTIS GRA&I
DTIC TAB

1u1; i ication

11 -It. tibut ion/

A'. llability Code8

;Avail and/or

Dcst '4(.lk

UNCLASSI"IFIE

,+ + +++ : m++'+'"+'.,SECURITY CLA.+..+.,O .. . T04. •P&,G& ,++ .:.+ ,

PREFACE

This document is the second of three volumes of the Final Technical Report (CDRL-Q--

"AOO#)for the Specification of Software Quality Attributes contract. F30602-82-C-

0137. Contract work was performed by Boeing Aerospace Company (iAC) for Rome
Air Development Center (RADC) to provide methods, techniques, and guidance to Air

Force software acquisition manager-wh 'ify the requirements for software
• - quality- -..--. :

The purpose of this contract was to (1) consolidate results of previous RADC contracts

dealing with software quality measurement, (2) enhance the software quality

framework, and (3) develop a methodology to enable a software acquisition manager to

determine and specify software quality factor requirements. We developed the

methodology and framework elementsto focus on an Air Force software acquisition

manager specifying quality requirements for embedded software that is part of a
command and control application. This methodology and most of the framework

elements are generally useful for other applications and different environments.-,.

The Final Technical Report consists ofhe volumes:

a. Volume 1, Specification o Software Quality Attributes-Final Report.

b. Volume 1I, Specification of Software Quality Attributes-Software Quality

Specification Guidebook.

c. Volume III, Specification of Software Quality Attributes-Software Quality

Evaluation Guidebook.

Volume I describes the results of research efforts conducted under this contract,

including recommendations for integrating quality metrics technology into the Air
Force software acquisition management process, recommended changes to Air Force

software acquisition documentation, and summaries of software quality framework

changes and specification methodology features.

Volumes II and III describe the methodology for using the quality metrics technology

and include an overview of the software acquisition process using this technology and

the quality framework. Volume 1I describes methods for specifying software quality--1

requirements and addresses the needs of the software acquisition manager. Volume Ill
-1- 17

-.z Pki-A
.. ,.:.-

describes methods for evaluating achieved quality levels of software products and

addresses the needs of data collection and analysis personnel

) Volume II also describes procedures and techniques for specifying software quality

requirements in terms of quality factors and criteria. Factor interrelationships,

relative costs to develop high quality levels, and an example for a command and

control application are also described. Procedures for assessing compliance with LJ

specified requirements are included. --_----

Volume Ill also describes procedures and techniques for evaluating achieved quality

levels of software products. Worksheets for collecting metric data by software life-

cycle phase and scoresheets for scoring each factor are provided in the appendixes.

Detailed metric questions on worksheets are nearly identical to questions in the

Software Evaluation Reports proposed as part of the Software Technology for

Adaptable Reliable Systems (STARS) Measurement data item descriptions (DID).

Terminology and life-cycle phases used in the guidebooks are consistent with the

December 1983 draft of the Department of Defense software development standard

(DOD-STD-SDS) (e.g., the term computer software configuration item (CSCI) is used

rather than computer program configuration item (CPCI)).

%N
'

!I .. ".

-ii- ,.-.

: ,j. .: . - ::. -.. =: ::.-. ;: . .. :.:.--.. .<., : '-,' -Z;

CONTENTS

1.0 INTRODUCTION 1-1
1.1 Background 1-1

1.2 Purpose 1-2

1.3 Scope 1-2

1.4 Use of the Guidebooks 1-3

2.0 ROLE OF QUALITY METRICS IN THE SOFTWARE 2-1

ACQUISITION PROCESS

2.1 Software Acquisition Process 2-1

2.1.1 System Acquisition Life Cycle 2-1

2.1.2 Software Development Cycle 2-3

2.1.3 Life-Cycle Relationships 2-5

2.1.4 Software Acquisition Management 2-7

2.1.5 Verification and Validation 2-8

2.1.6 Quality Assurance 2-9

2.2 Quality Metrics 2-11

2.2.1 Framework 2-15

2.2.2 Quality Specification 2-21

2.2.3 Quality Monitoring 2-23
2.3 Software Acquisition Using Quality Metrics 2-25

2.4 Potential Benefits and Problems 2-33
2.4.1 Benefits 2-33

2.4.2 Problems 2-34

3.0 QUALITY METRICS FRAMEWORK 3-1

3.1 Software Quality Factors 3-3
3.1.1 Factor Definitions and Rating Formulas 3-3

3.1.2 Quality Factor Interrelationships 3-9

3.2 Software Quality Criteria 3-11

3.3 Software Quality Metrics 3-11

6-iii-

Page

3.4 Metric Worksheets 3-15

3.5 Factor Scoresheets 3-17

4.0 SOFTWARE QUALITY SPECIFICATION METHODOLOGY 4-1

4.1 Select and Specify Quality Factors 4-7

4.1.1 Identify Functions (Step 1) 4-9

4.1.2 Assign Quality Factors and Goals (Step 2) 4-11

4.1.2.1 Command and Control Quality Concerns 4-11

4.1.2.2 System Quality Factors 4-11

4.1.2.3 Quality Requirements Survey 4-19

4.1.2.4 Complementary Quality Factors 4-19

4.1.2.5 Quality Goals Assignment 4-21

4.1.3 Consider Interrelationships (Step 3) 4-23

4.1.3.1 Shared Criteria 4-25

4.1.3.2 Beneficial and Adverse Relationships 4-25

4.1.3.3 Quantification of Relationships 4-27

4.1.3.4 Review of Quality Goals 4-35
4.1.4 Consider Costs (Step 4) 4-39 '

4.1.4.1 Life-Cycle Quality Costs and Benefits 4-39

4.1.4.2 Cost Variation Estimates 4-49

4.1.4.3 Cost Effects of Factor Interrelationships 4-51

4.1.4.4 Review of Quality Goals 4-61

4.2 Select and Specify Quality Criteria 4-63

4.2.1 Select Criteria (Step) 4-63

4.2.2 Assign Weighting Formulas (Step 2) 4-63

4.2.3 Consider Interrelationships (Step 3) 4-65

4.3 Select and Qualify Quality Metrics 4-67

4.3.1 Identify Metrics (Step 1) 4-67

4.3.2 Select and Qualify Metric Elements (Step 2) 4-68

4.4 Assess Compliance with Requirements 4-69

4.4.1 Review Requirements Allocations and Evaluation Formulas 4-69

4.4.2 Review Factor Scores 4-70

4.4.3 Review Criteria Scores 4-71

4.4.4 Review Metric Scores 4-72

-iv-

Page

Appendix A-Metric Worksheets A-I
Appendix B-Factor Scoresheets ReorB-1

ApedxCSfwaeQaiyEauainRpr -

F 4 v

FIGURES

*Page II

1.4-1 Software Quality Measurement Methodology 1-4

2.1-1 System Acquisition Life-Cycle Phases and Decision Points 2-2

2.1-2 Software Development Cycle 2-4

2.1-3 Life-Cycle Relationship between the System and the 2-6

Operational Software

2.1-4 Relationship of Software Development and V&V 2-10

2.1-5 Software QA Function 2-12
2.2-1 Quality Metrics Technology-Life-Cycle Model 2-14

2.2-2 Software Quality Model 2-16

2.2-3 Performance Factor Attributes 2-18

2.2-4 Design Factor Attributes 2-19

2.2-5 Adaptation Factor Attributes 2-20

2.3-1 Software Acquisition Quality Metrics Functions 2-24

2.3-2 Air Force Acquisition Relationships Involved in 2-26

Quality Metrics Functions

2.3-3 Recommended Responsibilities and Relationships for the QM 2-28

Specification Function

2.3-4 Recommended Responsibilities and Relationships for the QM 2-30
Monitoring Function

2.3-5 Relationship between Product Divisions and DACS 2-32
3.1-1 Rating Estimation and Rating Assessment Windows 3-4

4.0-1 Software Quality Specification and Evaluation Process 4-2
4.0-2 Flow of Software Quality Requirements 4-4

4.0-3 Procedures for Specifying Software Quality Requirements 4-6

4.0-4 Procedures for Assessing Compliance with Requirements 4-8

4.1.4-1 Quality Factor Life-Cycle Cost Ranges 4-40

4.1.4-2 Cost Effects of Positive Factor Interrelationships 4-52

4.1.4-3 Cost Effects of Negative Factor Interrelationships 4-56

-vi-

-Vi -" 4-'I

TABLES

2.2-1 Quality Concerns 2-17
* 2.2-2 Software Quality Factor Interrelationships 2-22

2.3-1 Organizational Evaluation 2-29
3.1-1 Software Quality Factor Definitions and Rating Formulas 3-2
3.1-2 Quality Factor Ratings 3-6
3.2-1 Software Quality Factors and Criteria 3-10
3.2-2 Quality Criteria Definitions 3-12
3.3-1 Quality Metrics Summary 3-13
3.4-1 Metric Worksheet/Life-Cycle Correlation 3-16
3.4-2 Software Development Products 3-18
4.1.1-1 Characteristics and Functions for Example System 4-10

4.1.2-1 Important S/W Quality Factors for Major C2 Applications 4-12
4.1.2-2 Examples of Application/Environment Characteristics and 4-13

Related Software Quality Factors

4.1.2-3 System/Software Quality Factor Correlation 4-14
4.1.2-4 Software Quality Requirements Survey 4-18

4.1.2-5 Software Quality Factor Identification Form-Survey Results 4-20
4.1.2-6 Complementary Software Quality Factors 4-22
4.1.2-7 Software Quality Factor Identification Form-Initial Goals 4-24
4.1.3-1 Effects of Criteria on Software Quality Factors 4-26
4.1.3-2 Positive Factor Interrelationships 4-28

4.1.3-3 Negative Factor Interrelationships 4-32
4.1.3-4 Factor Interrelationship Calculations 4-34
4.1.3-5 Software Quality Factor Identification Form-Revised Goals 4-36

4.1.4-1 Life Cycle Quality Costs/Benefits 4-38

4.1.4-2 Cost Variations Calculation Form-Initial Estimate 4-48
4.1.4-3 Cost Variations Calculation Form-Refined Estimate 4-60

l 4.1.4-4 Software Quality Factor Identification Form-Final Goals 4-62

4.2-1 Criteria Weighting Formula Form-Initial Weighting 4-64
4.2-2 Criteria Weighting Formula Form-Revised Weighting 4-66

"-vii-

i-.. , .\°.. _... ,.......................

GLOSSARY

AFCMD Air Force Contracts Management Division

AFCL Air Force Logistics Command

AFPRO Air Force Plant Representative Office

APSE Ada programming support environment

ASD Aeronautical Systems Division

CDR critical design review LA

CPCI computer program configuration item

CSC computer software component

CSCI computer software configuration item ,-

DACS Data and Analysis Center for Software

DAE Defense Acquisition Executive

DID data item description

DOD Department of Defense

DOD-STD-SDS Department of Defense software development standard

DOD-STD-SQS Department of Defense software quality standard

ESD Electronic Systems Division

FCA functional configuration audit

FSD full-scale development

HOL high order language

I/0 input/output

IV&V independent validation and verification

PCA physical configuration audit

* PDR preliminary design review

QA quality assurance

QM quality metrics

RADC Rome Air Development Center

SD Space Division

SDR system design review
- '[SPO System Program Office .

SSR software specification review

STARS Software Technology for Adaptable Reliable Systems

TRR test readiness review

V&V verification and validation

o.'vii'

r,* . - - ..• .,2 . , : k - ,,. .2 . > -,..... -, . - . - ,

1.0 INTRODUCTION

1.1 BACKGROUND

,K

.4 There has been a recent, increased awareness of critical problems encountered in

developing large-scale systems involving software. These problems include cost and

schedule overruns, high cost sensitivity to changes in requirements, poor performance

of delivered systems, high system-maintenance costs, and lack of reusability.

The government (the Department of Defense (DOD) in particular) as a customer for

large-scale system developments, has sponsored efforts to address these problems; for

example, development of Ada programming language and Ada programming support

environments (APSE), proposed DOD standards for software development (DOD-STD-

SDS) and quality (DOD-STD-SQS), the Software Technology for Adaptable Reliable
Systems (STARS) program, proposed STARS measurement data item descriptions

* (DID), and various development aids and tools. These all provide partial solutions.

Since 1976, Rome Air Development Center (RADC) has pursued a program intended to

achieve better control of software quality. Through a series of related contracts, this

program has sought to identify key software quality issues and to provide a valid

methodology for specifying software quality requirements and measuring achieved

quality levels of software products released incrementally during the software life

cycle. A quality model was established in which a hierarchical relationship exists

between a user-oriented quality factor at the top level and software-oriented

attributes at the second and third levels (criteria and metrics). Software quality is

predicted and measured by the presence, absence, or degree of identifiable software

attributes. (See Sec. 2.2 for an explanation of the quality model and an overview of

quality factors and attributes.)

The Final Technical Report for this contract (F30602-82-C-0137) contains the most

recent results of the RADC software quality program. This report incorporates

pertinent results from and uses foundations established in previous contracts. The
Final Technical Report consists of three volumes: the Final Report, the Software

-' Quality Specification Guidebook, and the Software Quality Evaluation Guidebook.

*1,. ",>[';,,- .,'....... ,..... . . -. - ,'4 . *a ,.- *. * . . . q

2 .7 mrt ." W - W

1.2 PURPOSE

The purpose of this guidebook (Vol. 1I, Software Quality Specification Guidebook) is to

provide a comprehensive set of procedures and techniques to enable an Air Force

software acquisition manager to specify quality requirements for software embedded

in command and control systems. Volume I1, Software Quality Evaluation Guidebook,

provides a comprehensive set of procedures and techniques to enable data collection

personnel to apply quality metrics to software products and to evaluate the achieved

quality levels. Volume I, Final Report, summarizes the results of contract task

efforts.

The purpose of the quality metrics technology is to provide a more disciplined

engineering approach to specifying, predicting, and evaluating software quality. The

benefits of this approach include spftware life-cycle cost savings (or cost avoidance)

and software products that reflect user-customer quality needs. Rigorous application

of metrics at incremental releases of software products throughout the life cycle

provides for early detection of quality-related problems. Periodic assessment of

quality levels provides better management visibility and enables timely decision

making.

1.3 SCOPE .

*Section 2.0 describes the role of quality metrics in the software acquisition process.

Descriptions of the system acquisition life cycle and software development cycle are

provided with a discussion of their relationships. Specifying quality requirements and

monitoring software product quality levels are described within the life-cycle

perspective. The software quality model and framework elements are introduced.
.w.a

Section 3.0 describes quality framework terminology and concepts key to

understanding subsequent details. All framework elements-factors, criteria, metrics,

worksheets, and scoresheets-are also described.

Section 4.0 describes procedural steps for selecting and specifying quality

requirements in terms of quality factors and criteria and for selecting metrics. Trade

studies are identified to aid decision making, and, for clarification, an example for a

1-2

.

.

command and control application is continued throughout the procedural steps. The

procedural steps for assessing compliance with specified software quality requirements

also are described.

This guidebook incorporates pertinent results from previous research concerning

software quality measurement 'conducted for RADC. Results of this research are

described in Software Quality Measurement for Distributed Systems, RADC-TR-83-

175, Volumes I, II, and II. Software life-cycle phases and terminology used throughout

this guidebook are consistent with the December 1983 draft of DOD-STD-SDS.

Significant enhancements to previous contract results are noted in the following

paragraphs.

The software quality model (described in Sec. 2.2) addresses software quality at three

hierarchical levels: quality factors, criteria, and metrics. The methodology described

in Section 4.0 uses same three categories. The hierarchical levels of quality parallel

the chronological procedural steps in the methodology (i.e., factors, criteria, and

metrics). Procedural steps are detailed and include consideration of interrelationships

*' among quality factors and relative costs to develop high quality levels.

Framework elements are also enhanced. Factors are categorized under performance,

iesign, and adaptation to aptly indicate acquisition concerns. Criteria are organized

under the same three acquisition concerns, thereby simplifying the attribute

relationships. Metric questions on the worksheets include explanatory information and

formulas and are nearly identical to the questions in the Software Evaluation Reports

proposed as part of the STARS measurement DIDs.

1. USE OF THE GUIDEBOOKS

This Software Quality Specification Guidebook addresses the needs of Air Force

software acquisition managers. Procedures are provided for specifying quality

requirements and for assessing compliance with requirements. The Software Quality

* . Evaluation Guidebook (see Vol. III) addresses the needs of personnel collecting and .

analyzing metric data. Procedures are provided for applying metrics, generating

". metric scores, analyzing scoring, and reporting results.

1-3 • .

- ~ ~ , o

and Design 1ssamStlmeitt A-ylpsis

SDR slip POR CDR TPR P'..

Specfictio Qult V V V V 7~t

I G.dbook fteq..ein..iss and Goals

,0 Miltnodology
0 P',,,sduun a

0 T'Ade $too-*%

** Craat.. I Sott..., Quality Com'pliance Ploblo..s

* . .ctoi

a * MOtItI I

* Walksheet,

Deiiin f ~eCOt Prd..ats

SOfta.eOelsty E-was,e lPfasodc Evauioat .leif. 9 tal Po.cReleas) * speoit-cation

Evaluation Achieved * DJOcMMents

Guladeb-ook Quality

Figure 1.4-1 Software Quality Measurement Methodology

1-4

J .p 4

.~. .. .* ~* ** * S*S' *.S'.~ . . **..* .. .,-..'

Procedures in each guidebook are contained in Section 4.0. Sections 1.0, 2.0, and 3.0

contain nearly identical information on the elements, perspective, and role of quality

metrics technology.

The guidebooks were designed for use with new projects, in which procedures are

performed (primarily) chronologically throughout system and software life cycles as

depicted in Figure 1.4-1. Using quality metrics technology and guidebooks for

evaluating system and software products in other contexts is addressed in Section 4.0.

Detailed explanations of life-cycle phases, review points, framework elements, and

methodology are provided in Sections 2.0, 3.0, and 4.0.

t2.

4. N

,,N

1-5

.. -.'.:: :?'.'''...''.."'- ... : :,:..:'......... :..Y-"- " " . . "" " . .

2.0 ROLE OF QUALITY METRICS IN THE

SOFTWARE ACQUISITION PROCESS

This section examines elements of Air Force system acquisition and software

acquisition processes, describes the process used for specifying and monitoring quality
levels, and discusses the role of quality metrics (QM) technology in the Air Force

software acquisition management process. Considerations include how QM technology

can be integrated into the Air Force software acquisition process and how existing :
mechanisms within the acquisition process can be used to implement QM technology.
Advantages and disadvantages of using QM technology in software acquisition

management and of integrating QM technology into the software acquisition

% management process are also discussed. tK

2.1 SOFTWARE ACQUISITION PROCESS

The following sections describe selected concepts associated with Air Force software

acquisition management, including system acquisition life cycle, software development

cycle, life-cycle relationships, software acquisition management, verification and
validation (V&V), and quality assurance (QA). Concepts introduced here provide a

basis for discussions of QM technology integration and implementation in the
- acquisition process in later Sections. The system acquisition life cycle and software

"i development cycle are fully defined in DODD 5000.1 and DOD-STD-SDS and are only

summarized here. This Section is not intended to describe all activities of each life-

cycle phase but to establish the background for discussion of the role of QM
technology.

2.1.1 System Acquisition Life Cycle -..*

The system acquisition life cycle defined in DOD-STD-SDS consists of four phases:

concept exploration, demonstration and validation, full-scale development (FSD), and

production and deployment. Four major decision points are associated with these

phases as shown in Figure 2.1-1 and as defined in DODD 5000.1 (Major System
Acquisition). These points are mission need determination; concept selection,

milestone I; program go-ahead, milestone Il; and production and deployment, milestone

2-1

•:..

(Secretary of Defense Decision Points)

MISSION MILESTONE I MIL.ESTONE I, MILESTONE III

NEDCONCEPT PROGRAM PRODUJCTION
*DETERMINJATION SELECTION GO-AHEAD DEPLOYMENT

FiueCONCEPT DEMONSTRATION PULL SCAIE ODCIN

Fiue2.1-1 System Acquisition Life-Cycle Phases and Decision Points

J5.

2-2

S j 1

111. The Secretary of Defense, advised by the Defense Acquisition Executive (DAE),

decides at these points whether to continue the program and proceed to the next phase

or to terminate the program. The system acquisition life cycle applies to the whole

system, not the individual parts.

Concept exploration is tle initial planning phase, during which the role of and plans

for using computer resources in the system are explored. During demonstration and

validation, translating operational requirements into functional, interface, and

performance requirements is completed; and requirements for each hardware and

software configuration item are defined. During FSD, the system is designed, built,

tested, and evaluated. These initial three phases should result in a system meeting
specified requirements. Production and deployment includes production (if applicable) :

and delivery and includes all activities involved in supporting the system until it is

retired.

2.1.2 Software Development Cycle

The software development cycle, as defined in DOD-STD-SDS, consists of six phases:

software requirements analysis, preliminary design, detailed design, coding and unit

testing, computer software component (CSC) integration and testing, and computer

software configuration item (CSCI) level testing (see Fig. 2.1-2). This cycle, however,

is not standardized and there are many variations throughout the industry. Although

names and breakdowns vary, the same process is generally followed.

All software requirements are specified during software requirements analysis. The -'r

authenticated software requirements specification (signed off by both the customer
and contractor) forms the baseline for preliminary design. During preliminary design,

a modular, top-level design is developed from the software requirements. During

detailed design, the top-level design is refined to successively lower levels until
individual units, which perform single, nondivisible functions, are defined. During .,.
coding and unit testing, the designer translates the design approach into code and

executes verification tests. During CSC integration and testing, code units are
V integrated and informal tests are performed on aggregates of integrated units. This

cycle concludes with CSCI-level testing, during which formal tests are conducted on

the software.

2-3.

: 2 -- .

,7o-I
'-','

" " ,' .L%' ' -" " % . ' - . . ' - . ' . - . ' " . ' .. " -. ' . . ' . . ' -. -. ' .. ' -. ' ., -.
° ,,, , 1

- , . - ,,' • • .' ,"

S$R

I'

. .. SOFTWARE
REQIJIREMENTS

ANALYSIS PDR

PRELIMINARY f
DESIGN CDR

DETAILED
, DESIGN "

CODGAND]

UNIT TESTING

-; F TEGRATON
AND TSTINJ

TRR FCAPCA

CSTLEVEi'

Figure 2.1-2 Software Development Cycle

2-4

% V

%" %J'. Fiur .1- Sofwar 76%ometCcl I

As with the system acquisition life cycle, the software development cycle has decision
. points associated with most phases. These decision points (shown in Fig. 2.1-2) are

_A
the: software specification review (SSR), preliminary design review (PDR), critical

design review (CDR), test readiness review (TRR), and functional configuration audit

(FCA)/physical configuration audit (PCA). These decision points are quite different

from decision points associated with the system acquisition life cycle. At these

decision points it is not determined whether to continue or terminate the program;

rather, progress up to that point is reviewed and it is decided if the developer has

completed the current phase and is ready to proceed into the next phase.

2.1.3 Life-Cycle Relationships

Each CSCI to be developed goes through the entire software development cycle. The

software development cycle can be completed in a single phase of the system

acquisition life cycle or can overlap several phases. For example, software could be

developed for risk-reduction analysis during concept exploration or demonstration and

validation. This software could be used to validate the feasibility of an algorithm or

to compare alternative approaches. This type of software may not be in the language

required for the operational software and may not be targeted for the same computer.

However, it still goes through the entire development cycle. The same is true for test

software developed to aid in validation of the operational software. Operational

,., - software development may overlap several system life-cycle phases; requirements

definition for operational software begins early in the system acquisition life cycle,

although operational software is not fully developed until FSD. In this guidebook

operational software quality is the primary concern; therefore, the relationship of the

operational software development cycle to the system acquisition life cycle will be

examined.

There is a specific relationship between the operational software development cycle "r"

and the system acquisition life cycle in most system procurements (see Fig. 2.1-3).

. The software requirements analysis phase overlaps part of the demonstration and

validation phase and the beginning of FSD. The remaining operational software .

development phases occur during FSD; i.e., preliminary design through CSCI-level

testing of the software development cycle. This relationship is assumed for the

remaining discussions.

2-5

. • , • , o . . • ,. . .-

%PI LO IION LIUAIO CPCLE~AN

OPRAI N EP EOSRTO

SOFTWAOF I WARE
4

REQUIREMENT %.

ANYALYSIS PDA.

DESIGNN

CODISCI AND 4

_4

:.

2.1.4 Software Acquisition Management

The software acquisition manager has various responsibilities during the software

development cycle. This Section focuses on. two general functions of software

acquisition management: (1) specifying requirements and (2) monitoring development

to ensure satisfiying the requirements. To describe all that this manager does during

the software life cycle is beyond the scope of this guidebook.

Specification of software requirements begins with development of the system

specification and continues until all requirements for each CSCI have been specified'" "

during software requirements analysis in the software development cycle. These

requirements include more than traditional functional and performance requirements.

They also include interface, human engineering, language, data base, delivery,

self-test, anomaly management, resource reserves, and quality requirements. Many

decisions are made to specify these requirements.

The software acquisition manager becomes involved at the system level, when system

functional tasks are allocated to software or to hardware. Allocation decisions may be

based on trade studies, system engineering, and risk analyses. Once the allocation of

functional tasks is completed, specific software requirements can be identified. The

result is a set of software capabilities, performance levels, and design constraints.

Identification of these specific requirements usually involves decisions supported by

trade studies. Such trade studies may include, for example, higher order language

(HOL) versus assembly language, distributed processing versus centralized processing,

growth capability required for timing and sizing, the degree of human operator

interaction required, and efficiency versus maintainability. These software trade

studies consider life-cycle costs, risk, schedule, capabilities, software performance,

and final product quality. These activities are concluded when the System Program

Office (SPO) authenticates (signs off) the software requirements specifications for

each CSCI.

Once software requirements are specified, the acquisition manager begins monitoring

software development. Monitoring continues throughout preliminary design, detailed

design, coding and unit testing, CSC integration and testing, and CSCI-level testing

and may continue into the system integration and testing that follows. The primary

2-7

* - ** !

!.-.''..' .'. . ". "..- .-.. . -. .'." .'. .. ". " .. -..'. ..-. .'.% -.'. .'..-'.'..'.' < '. ". °'"." .. .''.-.. .,.. ".-.... '.. '..'.. .

concern of monitoring, other than schedule or cost, is whether the software satisfies

the requirements. Monitoring provides the acquisition manager with visibility of the

evolving product in order to track technical progress and quality. This visibility is

achieved through various reviews, audits, documentation, and products required

periodically throughout development. Established criteria and measurement methods

for each review and audit and for all documentation and products are nescessary for 11
tracking progress. Tracking enables the manager to identify problems early enough to

correct them. Two activities providing feedback are V&V and QA.

2.1.5 Verification and Validation

The purpose of V&V is to provide the Air Force with systematic assurance that

acquired software will perform missions in accordance with requirements. The terms

verification and validation are often used interchangeably, but in the software

development cycle distinct concepts are associated with each. The meaning of these

terms as used here is as follows:

Verification is the iterative process of determining whether the product of each

software development phase fulfills requirements levied by the previous phase. That

is, (1) software requirements are verified to ensure that they fulfill system-level

requirements, (2) the software design is verified to ensure that it satisfies

requirements in the software requirements specification, and (3) code is verified to

ensure that it complies with the top-level design and detailed design documents. This

process does not consider whether system-level software requirements are correct or

whether they actually satisfy users needs.

Validation is a continuing process to ensure that requirements at various levels are

* correct, thus satisfying mission requirements defined by the using command.
Sometimes validation is considered to be the system-level test activity that validates

the CSCI against software and system requirements. In reality, it is much more than
that. Validation, like verification, continues throughout the software life cycle. For

example, when software requirements are allocated and derived, a system-level

requirement could be found to be vague or incorrect; or during design, it could be

discovered that a software requirement is infeasible or ambiguous. Feedback to the

2-8
0 °. -,

manager enables corrective action to be taken early in development, thereby reducing

risk and cost.

The concept of V&V and its relationship to software development products is shown in

Figure 2.1-4. V&V provides feedback to the software acquisition manager concerning I
software technical performance. The term IV&V is used when V&V is done for the Air
Force by a contractor other than either the prime contractor or the subcontractor who

is developing the software.

2.1.6 Quality Assurance

According to MIL-S-52779A, the purpose of software QA is to ensure that the

software delivered under a contract complies with contract requirements. This type

of QA program will not ensure development of a high-quality software product unless
software quality attributes are specified in measurable terms as part of the contract.
The objective of current QA programs is to provide feedback to the acquisition
manager concerning various aspects of the development process. QA is similar to

- V&V, the major difference being that V&V provides technical feedback on software

products at only a few points in time, whereas QA provides feedback on a wide range

of development activities. But contractual software quality is not normally defined in
quantitative terms. The current goal is simply to achieve better quality through

controlling the development processes.

Section 2.3 explores how QM technology can help to expand the scope of QA programs

to include specification of software quality requirements and measurement of X

achieved quality levels for software development products. The following paragraphs ..-

explain the current scope of QA programs.

At one time, software QA was equated to testing. As an illustration, Section 4 of the

CPCI development specification (according to MIL-STD-483) was called Quality
Assurance Provisions. However, as with other products, it was learned that quality

cannot be tested into software. Because of cost and schedule impacts, it is usually
too late to make changes when quality problems are found during testing. Quality can

be affected by how code is written and how software is designed. If a software quality
problem is found during testing, it is usually very expensive to redesign and to change

, .2-9

MISSION
REQUIREMENTS

+ Validation

SYSTEM REQUIREMENTS DESIGN CODE
(SOFTWARE (TOP-LEVEL DESIGN AND (CODE, DATA. AND/OR (SOFTWARE

SPECI.I REQUIREMENTS DETAILEDDESIGN TESTPROCEDURESPRDC
SPECIFICATION) DOCUMENTS) ANDORSUUTS

CATION

REQUIREMENTS DESIGN SOFTWARE

VERIFICATION VERIFICATION VERIFICATION

Figure 2.1-4 Relationship of Software Development and V&V

rlI

2-10

the code. Quality should be planned, designed, and built into software. This
realization has lead to the current life-cycle-oriented QA approach. This approach

focuses attention on all phases of the software development cycle; and software QA
now includes many activities, such as ensuring that software is being developed in

Saccordance with plans, that requirements are traceable, that design and code are

easily and economically supportable, and that testing is accomplished as planned.

These activities provide necessary feedback to the software acquisition manager.

Software quality assurance programs, however, are primarily administrative rather
than technical. For example, the QA organization does not trace requirements but

ensures that Engineering has developed traceability matrices. The QA function is

essentially a checkoff function applied during the software development process; i.e.,

" QA ensures that everything is done as planned. Software QA continues throughout the

software development cycle (see Fig. 2.1-5).

Software QA is an evolving discipline. Experience has provided insight into which

development practices tend to produce a higher quality software product, and the QA

program ensures that selected practices are used by checking the development

process. The next step to improving quality is to quantitatively specify quality

requirements and to measure and control the quality of the software product as it

evolves. Implementing QM technology in the Air Force acquisition process w, I

provide the added dimension of quantitative measures to addressing quality concerns

for software products.

2.2 QUALITY METRICS

The purpose of QM technology is to enable the software acquisition manager to specify

a desired software quality level for each quality factor of importance to the

application and to quantitatively measure the achieved levels of quality at specific

points during development. These periodic measurements enable an assessment of

* current status and a prediction of quality level for the final product. Some problems

with delivered software products have been that these products are (to varying

degrees) unreliable, incorrect, and/or unmaintainable. QM technology addresses these

and other quality-oriented problems by providing a means to specify quality

2-11

40
-. .

(Anytime
During the

Development Process) QA Function" 1 __ _ _ __ _ _ __ _ _ _

IS THE SOFTWARE FEEDBACK TO
SOFTWARE ACTIVITY OR PRODUCT IN ACQUISITION

ACTIVITY ACCORDANCE WITH MIL- MANAGER
OR STDs, PLANS (SDP, TEST

PRODUCT PLAN. SCM PLAN. SQA_,..___
PLAN, ETC.) OR THE CDRL?

Figure 2.1-5 Software QA Function

J. r -

r..

b%
,.

%*%

2-12 .

r .. .,... ,.., 1.,.%., .,..-. ,- , ,,... .-...... ... :..,-.- ,-,. ,. . .: ._--. .- .. . ,. ..

requirements, to quantitatively measure quality achieved during development, and to

predict a quality level for the final product.

QM technology measures the degree of software quality, not the level of software

technical performance; e.g., how easy is it to maintain the software, not how accurate

is the navigation algorithm. However, the process of specifying and measuring quality

levels is analogous to the process of specifying and measuring technical performance.

-Both processes begin with similar activities: system needs are assessed, trades are

performed (involving resources and levels of performance or levels of quality), and

requirements are specified. Subsequent phases involve evaluations of how well these

requirements are being satisfied.

Technical performance levels are traditionally evaluated by modeling in early

development stages and by testing in later development stages. Quality has

traditionally been evaluated by such methods as reviews, walkthroughs, and audits.

This type of quality evaluation ensures that, for example, designs are traceable to -.

requirements, configuration management is adequate, and standards and plans are

being followed. However, it does not address such quality issues as software

reliability, correctness, and maintainability. QM technology enables a quantitative

assessment of these types of quality factors at different stages of development,

thereby ensuring that specified quality levels are being satisfied in a manner similar to

performance evaluation by testing.

Figure 2.2-1 depicts the software life-cycle model used in QM technology. The

software model is shown in typical relationship to two system acquisition phases.

Eight development states are shown with typical review and audit points. There are ' .

two system-level activities involving software: system/software requirements analysis

and system integration and testing (both shown in dashed boxes). (Operational testing

and evaluation is the last FSD phase but is not shown as it is not normally performed

by the development contractor.) There are six software development phases: software

requirements analysis, preliminary design, detailed design, coding and unit testing,

CSC integration and testing, and CSCI-level testing. These phases refer to the same

development activities as are described in Section 2.1. This division of activities was

chosen because at the end of each activity shown in Figure 2.2-1 a configuration

baseline generally is established, and software products (specifications, documents,

2-13

" " " ". . -" . " " . " .- - ". " ' - - ". " " ' - . . " - - " " " - .

SYSTEM ACQUISmO.11PHASE$:

DEMONSIRATION AND, FLILL.SCALAE VILOPMENdI
VALIDATION

0..ity, Metria; Sciftwate L.i.t Cycle Model:

SONt ssm POR COB TSR FACA.0R -

SYSTSllMENOTWS LYI

PIS.

Q.~aI~y M~tni- MSIGNg

CS INEG-TO

4.V,

code) describing that baseline are available for review or audit and the application of 'V

metric measurements. Also illustrated in Figure 2.2-1 are the two points at which

quality requirements are specified and the eight points at which quality levels are

"- measured (monitored). These measurement points generally correspond to the review

- or audit points for configuration baselines.

2.2.1 Framework

A hierarchical model for quality has been established (see Fig. 2.2-2). User-oriented

factors (e.g., reliability, correctness, maintainability) are at the top level,

software-oriented criteria are at the next level, and metrics-quantitative measures

of characteristics-are at the lowest level.

This model is flexible in that it indicates a general relationship between each factor

and its attributes. This permits updating of individual elements to reflect technology
advances without affecting the model itself. For example, as new user concerns

;- evolve, new factors can be added at the top level; and as software technology evolves,

criteria and metrics can be added, deleted, or modified as necessary. There are

currently 13 quality factors, 29 criteria, 73 metrics, and more than 300 metric
elements (distinct parts of a metric). Table 2.2-1 shows the 13 quality factors and t

describes the primary user concern for choosing each factor. Quality factors and user

*concerns are categorized by three types of acquisition concerns with respect to the

software: (1) product performance-how well does the software function in its normal

environment; (2) product design-how valid (appropriate) is the design with respect to

requirements, verification, and maintenance; and (3) product adaptation-how easy is

it to adapt the software for use beyond its original intended use (e.g., for new

requirements, a new application, or a different environment). L ...

Figures 2.2-3, 2.2-4, and 2.2-5 show the quality factors, criteria, and metrics in the

hierarchical relationships of the software quality model The metrics are identified by

acronym only in the Figures. These and other framework elements for QM technology

are described in detail in Section 3.0. The following sections describe some aspects

involved in specifying and monitoring software quality using QM technology.

,.

2-15

. I' -• -
i,,..=' ,+',j",,- -. - ,,' , • ' +. ., ,, .),. . .. ' ., . , ' ". . .. ,.Y, ". . +,\,. , ..,.. b. .. ,.. ... ,,

USER-ORIENTED VIEW OF ANFACTORASPECT OF PRODUCT QUALITY

~3~7 R~~JSOFTWARE-ORIENTEDCRTR NCRTRINCRITERION 04ARACTERISTICS WHICH
INDICATE QUALITY

- - 1

- Iz

QUANTITATIVE MEASURES

METRIC METRIC METRIC OF CHARACTERISTICS

Figure 2.2-2 Software Quality Model

2-16

Table 2.2-1 Quality Concerns

Acquisition Concern User Concern Quality Factor

HOW WELL DOES IT UTILIZE A RESOURCE? EFFICIENCY

HOW SECURE IS IT? INTEGRITY

PERFORMANCE- WHAT CONFIDENCE CAN BE PLACED IN RELIABILITY
HOW WELL DOES IT WHAT IT DOES?

FUNCTION?

HOW WELL WILL IT PERFORM UNDER SURVIVABILITY
ADVERSE CONDITIONS?

HOW EASY IS IT TO USE? USABILITY

HOW WELL DOES IT CONFORM TO THE CORRECTNESS

DESIGN - REQUIREMENTS?

HOW VALID IS THE HOW EASY IS IT TO REPAIR? MAINTAINABILITY -

DESIGN?

HOW EASY IS IT TO VERIFY ITS VERIFIABILITY
PERFORMANCE?

HOW EASY IS IT TO EXPAND OR UPGRADE EXPANDABILITY
ITS CAPABILITY OR PERFORMANCE?

A THOW EASY IS IT TO CHANGE? FLEXIBILITYADAPTATION - :.

HOW ADAPTABLE IS HOW EASY IS IT TO INTERFACE WITH INTEROPERABILITY
IT? ANOTHER SYSTEM?

HOW EASY IS IT TO TRANSPORT? PORTABILITY L,-"

HOW EASY IS IT TO CONVERT FOR USE IN REUSABILITY
ANOTHER APPLICATION?

2-17 . . o .. -

2 -17 ".. . . .-- *-'-.

..~a*~~ - ...- :. - ---.-

V..

-SS PRTE 5SING

RNELIRIITY

SYSTEM ACCESSIBLITY

ACCURACY ANML AAEET SIMPLICITY

LAC AM. IT S

-AM 2 S1

-AM.3 S1

AM 4

AM6 ~ S 6

AM6

ANOMALY MANAGEMET ATNM DISTRIBUTEDNESS MOUAIY RECONFIGURABLY

4, - AM 3

-AM43

AM I
USABILITYHAM 6 __ _ _ _ _

AM ' ~OPEABI7RANIN

OP LN

OP

Figure 2.2-3 Performance Factor Attributes

2-18

7j

-. CS.2

MAINTAINABILITY

CONSISTENCY MODULARITY SE LF-DESCRIPTIVE NESS SIMPLICITY VISI8ILITY

CS. I Mo. Io. SD..1 vs. 1

CS.2MO.2 SD. S.2 VS.2
SD_3 _S1.3 VS.3

51.4
SI.6

VERIFIABILITY

MODULARITY SELF-DESCRIPTIVENESS SIMPLICITY VISiB1ILITY

Mo. I SD. I b...S1.1 vs. 1

MO.2 SD.2 2V2
_SD.3 VS.3

_SI.6-

'I.

2-19

- . *..d 4~ I~l .>t. .S~ -%
NO.V

4'7

EXPANDBILIT

AT 3 $031 Sl3

AT 4 $1.4

SI S
COEMONAITY MODULARIT SNEEON E LF- ~ ~ jYCMATSLT

DEORIPTAEESISIITIIT

SO 33 1.

SIST

2-2

'S.4

POTAILT SY -.. - . - .5- %- - .. * .

N4PNDENC -OD --- '- DESCRIPTIVENESS

2.2.2 Quality Specification

When determining and specifying software quality requirements, system needs are

assessed from a quality perspective; the desired quality factors, associated criteria,

and applicable metrics are selected; and quality-level goals are derived for each

separate quality factor. When assessing system needs, application characteristics

should be considered. For example, if the system will have a long life cycle, emphases

on maintainability, flexibility, portability, and expandability are recommended.

Factor goals define the required quality levels to be achieved for the factor (i.e.,

excellent, good, or average). In general, choosing a higher quality goal will result in

more resources being expended to achieve that level. When deriving factor goals,

interrelationships between factors should be considered because a high quality goal for

one factor may conflict with a high quality goal for another factor. Table 2.2-2 shows

the beneficial and adverse relationships between quality factors; some factors have a

positive relationship and others conflict. For example, specifying a high quality level

" for most factors conflicts with specifying a high quality level for efficiency. These

* relationships are explored in detail in Section 4.1.3.

A typical problem for an embedded software system arises when reliability is of the

-" utmost importance because of the type of mission to be performed, but efficiency is

also required because of space and weight limitations, and flexibility is needed because

of the variety of missions and/or targets. It is normally infeasible to select and

achieve high quality levels for all three factors. Highly efficient code is usually

tightly written assembly-level code and tends to be not as reliable or as amenable to

changes (flexible) as looser, more structured HOL code. And code written to be

reliable and flexible tends to be less efficient. Trade studies are needed to resolve

these problems. If some efficiency is sacrificed for reliability, then performance

goals (e.g., for accuracy or range) may be affected. If some flexibility is sacrificed

for efficiency, then the scope of the missions and/or targets may be reduced. QM

technology provides an aid for decision making when selecting quality-level goals,

_A when determining feasible software requirements, and for allocating acquisition

resources. Several iterations of quality tradeoffs may be required for choosing

reasonable quality goals. Section 4.0 provides specific techniques for choosing quality
factors and includes consideration of application characteristics and factor

interrelationships.

2-21

, . z .-.-

" " "," """""" " ".. ." "" "~*5 "" " ."" . 5, .""" " " " . '"- . . " '"-"" -" , " ""-

y,: ';W7 7-17

0-r ,;,

Table 2.2-2 Software Quality Factor Interrelationships

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION I
E EIR S U E F I P RC F N E Us 0 A E X I N 0 E

QUALITY F TL R A R I R P E T R U
FACTOR I E I V B R N I A X E T SFACTOR C G A I I E T F N I R A A. AFFECTED I R B V L C A I D B 0 B BT E I I A I T I A A I I I

0N T T N N 8 8 L E LINN C Y I I Y E A I I I R I IQUALITY T I B LI T A T T0 FACTOR y I S I I Y B Y Y
S SPECIFIED T L T I

SPCFE Y I Y Y L
ET T-

YY
P EFFICIENCY

F INTEGRITY 0,- "RL I
mRELIABILITY : ,

A ___ __ ___ __-__,,,_ __ __ __,__ _""_

N SURVIVABILITY I/Nj ,.,T

__ _ _ I7 L \ Z7 IV I
USABILITY I , "

D CORRECTNESS L L /,.,_"
SI MAINTAINABILITY , "

N 1"111111
VERIFIABILITY

EXPANDABILITYA .----...-.

D FLEXIBILITY 'I ' V z:-i'
A .,,¢-,,

T INTEROPERABILITY I

PORTABILITY

REUSABILITY

A = POSITIVE EFFECT

NEGATIVE EFFECT

BLANK = NONE OR APPLICATION
DEPENDENT

2-22

.--. ..

- '.,, ,,. . . .,. *. . . ,. .,. ,..-. . . _ .o . - .. _-,

2.2.3 Quality Monitoring

When monitoring software quality, the quality metrics (in the form of questions on

worksheets) are applied to software products (specifications, documents, code) at

different stages of the development cycle, and a quality-level score is calculated for

each factor. The factor score predicts a quality level for the final product. The

points in the development cycle where data gathering and analysis are recommended is

shown in Figure 2.2-1. These points generally correspond to normal reviews and audits

conducted when a configuration baseline has been established (SDR, SSR, PDR, CDR,

TRR, and FCA/PCA). Before each review or audit, the metrics selected for the

project are applied to software products resulting from that phase of development.

This results in a quantitative value for each metric. The metric values are then used

to calculate scores for each criterion, and the criteria scores are used to calculate a

score (predicted quality level) for each factor.

The quality metrics are applied at incremental points during the development phases.

This enables periodic review of progress in meeting quality goal requirements and aids

in pinpointing areas of weakness (and strength) in product quality as the product

evolves. There are two types of metrics-anomaly detecting and predictive. Both are

used in scoring. A low score for predictive metrics indicates that a low score will

' probably result for the end product because the design is not considering aspects

important to achieving the desired quality level. For example, if the design has very

little spare storage capacity, the end product will not be highly expandable. A low

score for anomaly-detecting metrics indicates an actual design or code deficiency.

For example, if provisions are not made for immediate indication of an access

violation, software integrity would be jeopardized. Evaluating low metric scores

provides an opportunity for identifying deficiencies and anomalies during development

when they are more easily corrected.

Worksheets have been devised to help gather metric data. There is a separate

worksheet for each development phase, and each worksheet lists only metrics

applicable to that phase. A more detailed explanation of the worksheets is provided in

Section 3.4.

2

2-23

SIG I.CD

S oft w are DE

N'O

IRK FCA-P-

CSC, -LEVEL

Software N)EII

AcquisitionY r
MaagrPEIFYING IMONITORING

Far~c.O~tSPECIFYING

SO~twaY I dentifying Quality Factors to Be

Cm Included

Functions 0 Dtermi Requrd Goals for Each "

MONIlTORINaG

* Gather Data at Ariie. Poins
* C tnlaat.Data

* Track PropreI
0CorretDeficiencies IsNecessary)

iure 2.3-1 Software Acquisition Quality Metrics Functions

J. %

aa ,n%

a ..
1

* n. a

2.3 SOFTWARE ACQUISITION USING QUALITY METRICS,

Two general functions of the software acquisition manager are described in Section
2.1.4: (1) specifying requirements and (2) monitoring development to ensure that

requirements are being satisfied. Also two general functions associated with QM
technology are described in Sections 2.2.2 and 2.2.3: (1) specifying quality
requirements and (2) monitoring development to ensure that metric scores are
predicting specified quality goals. When using QM technology, monitoring begins

earlier in the development cycle. The relationship of these functions to the software
life cycle is shown in Figure 2.3-1.

Specifying and monitoring have not usually overlapped. The specification of software
requirements was normally completed before development monitoring began, as shown
in Figure 2.3-1. Metric questions have been devised to enable evaluation of software
quality reflected in the system specification available at the system design review
(SDR). This moves the start of monitoring forward so that the two functions overlap.

Several organizations normally are involved in performing these two functions.
Although the internal structure of the Air Force product divisions (ESD, ASD, and SD)
may differ, the relationship of the SPO to external organizations is basically the same

for each division. Organizations that may be involved in the QM functions and their
recommended relationships are shown in Figure 2.3-2. Organizational relationships are

discussed in the following paragraphs.

*" Several organizations should be involved in the specification function. The primary
,- organization responsible for software requirements specification is SPO Software

Engineering. However, SPO software engineers need help from both the using
* command and Air Force Logistics Command (AFLC) to fully define software quality

needs. Both organizations have a vested interest in requirements affecting system

operation and support.

The using command is primarily interested in operational requirements and is

especially qualified to contribute to a definition of quality needs for the performancequality factors (e.g., efficiency, integrity, and reliability). AFLC is primarily

u interested in support requirements and is especially qualified to contribute to a

2-25

!....

.". ... - - " ". - " " " . - " ."' " . '" - ' , - . .' "" ' '- ." - " " - ' . ".. . " . " - . -. " - i "

-. A-

Prouc

Comn NC .MnQ

. (SISIO

(A C T A / A C M C

l*& Leqend
Arc - A,, r~a~nng om.,..nd Ar * A., O~c S ~n~ncSl. .*.

SAC T~t~a A, Co~nnd FIC ArIoqt~c CO,.nandMO *A WI~E(IISym Osso

SAC Statc~cACo.4.ndAFFO *AP P~steE~S~et~t.eOI,,#SOL

MAC M,~tay A, C~~e.nd SC -Sy~e,.,Pr~..4Ott~e Q * .~aItr n.P.nc

-A..Aco C9......(s

Figur Ta.3- ca Air orcen Acqisiio ReFLisis vomaed in O .ult elialtiFnctions
SAC t~tg~c~,Co m*1c AFAO .AF lantRepesenat-Offie S - Saic, -'.9.

'2-2

)9..~%

- -Q

definition of quality needs for the design and adaptation quality factors (e.g.,

maintainability, expandability, and portability). With input from these organizations,

SPO Software Engineering can determine the contractual statement of quality

requirements. In addition, the Product Division Software QA organization is normally I
tasked to ensure that quality requirements are included in the contract. These]
responsibilities and relationships for the specification function are shown in Figure

2.3-3.

Several organizations also should be involved in the monitoring function. Among the

first activities are identifying and negotiating with the organization that will collect

and analyze metric data. If that organization is to be another Air Force agency, such

as Air Force Contracts Management Division (AFCMD), then the SPO needs to

negotiate the effort through a memorandum of agreement. If the organization is to be

an IV&V contractor, then the IV&V contract needs to be negotiated. These

negotiations must be completed very early in the program before data collection

starts, and SPO Software Engineering must ensure that necessary support is provided.

- Several organizations could collect and analyze data, including SPO Software

Engineering, the Product Division Software QA, the Air Force Plant Representative

Office (AFPRO), and an IV&V contractor. The following criteria were established to

aid in selecting an organization: technical capability, labor availability, economy, and

data availability. Technical capability refers to the depth of technical understanding

of software by people in the organization. Labor availability refers to availability of

*' qualified people to perform this additional task (i.e., currently available or readily

-' obtainable). Economy refers to the least costly method for the SPO to obtain data.

Data availability refers to the ability to access the most current contractor

documentation and information. Informal lines of communication greatly influence

." this factor.

We rated four candidate organizations using these criteria, based on our experience. A

. score of I represents the best conditions and a 3 represents the worst for each

criterion. A total unweighted score was determined for each organization, with the

lowest score representing the best choice. The evaluation scores are shown in Table

2.3-1.

2-27
.o

:::::::::::::::::::..,.... .. :

% 1 .-p % .. .R N: "V IV

-UsingPrdc

Command AFCDivision Software QA

Provide ~ ~ ~ ~ roid QM opraunapVrtyortqurme
requirementss

Providei contattrofwar
rrequirements

Figure233C-

Recommended Responsibilities and Relationships for the QM Specification Function

2-28
'

%

Table 2.3-1 Organizational Evaluation

T C L A E D A 5 5
E A A V C A V C u
C P B A 0 T A 0OMH A 0 1 N AlI R M

-'I I A M A * R
C LB y B Y
L T L L

\RAIACORGANIZATION T T
Y y

SO2 2 12 7
ENGINEERING

PRODUCT DIVISION 3 3 1 3 10
SOFTWARE QA

AFPRO 2 2 1 1 6

IV&V 1 1 3 2 7

1 = BEST
2 = MEDIUM
3 = WORST

*Lowest Score is Best (Unweighted)

2-29

~Provide quality metric

evtaluequaiot

- - Inicte at rate u i e ti

Figure 2.3-4

k Recommended Responsibilities and Relationships for the QM Monitoring Function
-A

2-30

%~%. *

Several assumptions were made for scoring. The first was that all criteria are

weighted equally; actually, however, technical capability and labor availability may be

overriding factors for selection. For technical capability, it was assumed that Product

Division Software QA groups are unlikely to be able to obtain people experienced in

both software engineering and QA to perform that job. For economy, it was assumed

that any Air Force person (civilian or military) is a free resource for the SPO.

Otherwise, the SPO must pay for IV&V contractor services. Data availability scores

include the assumption that the IV&V contractor works for SPO Software Engineering

and that good communication channels are established. These assumptions may not be

valid in all situations.

The AFPRO received the lowest score and, therefore, was rated best. It is generally

recommended that the AFPRO perform data collection and analysis for the SPO.

When this cannot be negotiated, it is recommended that an IV&V contractor be

assigned this task. Although SPO Software Engineering and the IV&V contractor are

rated equally, the recommendation to use an IV&V contractor was made because of

better labor availability. It is recommended that a chart similar to the one shown in

Table 2.3-1 be developed early in a program.

A proposed DID, Software Quality Evaluation Report, is contained in Appendix C and

can be used to report data collection and analysis results to the software acquisition

. manager. This feedback enables the manager to track progress, ensure that

requirements are being satisfied, and take corrective action when necessary.

Recommendations for responsible organizations and relationships for monitoring are A
shown in Figure 2.3-4. We recommend that the Data and Analysis Center for Software

(DACS) at Rome be used as the data base for quality metrics information and that the

SPO provide a copy of the quality requirements and all metric data to DACS (e.g.,

provide a copy of the Software Quality Evaluation Report). This has the advantages of

*" providing one centralized location for all QM data and enabling access to all historical
data by any one product division. It also enables large-scale data analysis and

correlation to be performed on data from all product divisions. Any changes in QM

technology such as new factors, metrics, and worksheet formats should be

," disseminated from a central point. This concept is illustrated in Figure 2.3-5.

2-31

i ".

Framework Elements:
e Factors
e Criteria
e Metrics
* Metric Elements
e Worksheets * Framework
. Scoresheets Elements

e Hiorical AF PRODUCT DIVISION PROJECT

Data AF PRODUCT DIVISION PROJECT

DACS AT ROME AF PRODUCT DIVISION PROJECT

, Store Data * Select Framework
Elements

@ Validate Metrics
e Gather Metric L.

o Enhance Data * Metric
Framework Data
Elements 4 e Analyze Data at

Quality
Require-
ments

" Actuals
(Data,
Ratins S&
Modifica-

QM tions)
001 DATA

BASE

%: %Figure 2.3-5 Relationship between Product Divisions and DACS

2-32

p%

-'.°r

The preceding paragraphs discuss government monitoring only, and the development
contractor was not mentioned. Because quality factor requirements are included as

contractual requirements, the development contractors must also monitor achieved
quality levels to show compliance. However, to ensure that data and reports received

by the SPO are unbiased, we recommend that the government independently monitor

achieved quality levels.

2.4 POTENTIAL BENEFITS AND PROBLEMS

This section discusses the potential benefits and problems associated with integrating

QM technology into the software acquisition management process and of using QM

technology during acquisition.

2.4.1 Benefits

Possible benefits of using QM technology include a higher quality end product, greater

emphasis on quality throughout the life cycle, better management control, and life-
cycle cost savings. A high-quality end product is possible because required quality
levels are specified quantitatively. There is little room for misinterpretation or for
undesirable results such as a highly efficient but unreliable and unmaintainable

product. The acquisition manager is assured that the end product is of the required
degree of quality. Also, other software requirements are considered at the same time

that quality requirements are being specified. This means that the quality

requirements should be reasonable and should not conflict with functional and

performance requirements (or vice versa), thereby increasing the likelihood that all
software requirements can be satisfied within allocated resources. In addition,

achieved quality levels are monitored throughout development providing increased
visibility for control of quality. Periodic application of metrics provides the

acquisition manager with adequate feedback about software development progress and

enables early redirection if necessary. Finally, evaluating specific low metric scores
. provides an additional mechanism for detecting deficiencies and anomalies in

requirements, design, and code.

Life-cycle cost savings are possible for several reasons. Using metrics to detect
deficiencies and anomalies enables correction during development. Correction at this

2-3326 iii i

time is less costly than during operation and maintenance. Also, it is possible to be

more precise about funding for quality. If adequate quality levels are achieved during

development, it is unnecessary to spend more effort in raising quality levels or in

developing a near-perfect product.

The greatest cost savings potential comes from having certain qualities actually built

into the software. For example, if system A has a high level of reusability built into

the software, then cost savings result from building system B reusing a portion of

system A software. These potential cost savings are available for other quality

factors such as flexibility, portability, interoperability, and expandability. Details for

considering cost are described in Section 4.0.

Other benefits can also be realized. For example, use of QM technology can provide

the acquisition manager an added assurance that the required degree of reliability is

achieved in the final product. This would be especially important in acquisitions

involving space applications or nuclear armaments.

2.4.2 Problems

There are potential technical and administrative problems when using quality metrics

in acquisitions; i.e., in integrating QM technology into the Air Force software

acquisition process. Problems could arise during one of the most important tasks, that

of maintaining a current QM technology baseline. Baseline changes could result from,

for example, changes in quality factor ratings, new factor ratings being established,

new metrics being established, and metrics being validated for new application areas.

Changes could originate from any product division using QM technology. Using DACS L

" would minimize the risk of such problems as: multiple baselines in the product

divisions, duplication of validation efforts, and use of outdated information (e.g.,

outdated ratings).

"* A potential problem could arise where subjective judgment is required in scoring some

metrics. Two people gathering metric data from the same software products could

score the worksheets differently. This risk has been minimized by rewriting the

questions on the metric worksheets so that they are clear, simple, and understandable.

* Also, metric element explanations have been included for clarification. As more

2-34

. .° . " . - ..

.-. 2 3 . - '".

'-.:.--, "G '',"..".- -. '. - '." . .. -..- -.. ". . . -+ . .- ''-:".,'-.--"- .+

L

historical information becomes available, it will be possible to do a reasonableness

check on worksheet data entries, based on previous data ranges. However, we
recommend that experienced personnel perform data collection and that education and

training be provided for personnel involved with QM technology.

*, Another potential problem might arise when attempting to automate portions of the

data gathering task through an automated measuring tool. This type of tool scans
source code and outputs statistics on the code (e.g., percentage of comments, number

of specific constructs). The scanner is language dependent and must be developed for
each language, but standardization on a language (e.g., Ada) will minimize cost.

Problems with organizational structures and manpower may be encountered when
implementing QM technology at the product divisions. Program offices do not have
QA divisions. QA in the program office is usually done by Engineering. In addition,

software QA organizations in the product divisions are relatively new. These
organizations are trying to define their role in the acquisition process and their
relationship to the program offices. Absence of a well-defined organizational . "
structure for software QA could lead to disagreements over assigning QM
responsibilities. Either organization could resist accepting responsibility for QM
functions because of staffing problems. Program offices are usually not fully staffed
with software engineers; to accept more responsibilities without additional personnel
would be difficult. Software QA organizations have small staffs and find it difficult to
hire qualified personnel. A person with experience in both software engineering and

QA is required, but few software engineers are interested in QA assignments.
Staffing problems should receive attention during implementation of QM technology in

the Air Force software acquisition process.

2-35

,V, ,*,-~~~~~~~~~~~~~~~.%.r............-.. •............... ,." .",' ,-.

- IZ-

3.0 QUALITY METRICS FRAMEWORK

This section describes elements of the software quality framework. Terminology and

concepts introduced in this Section are used throughout subsequent Sections.

The goals of quality metrics (QM) technology are to enable a software acquisition

manager to (1) specify the types and degrees of software qualities desired in the end

product and (2) predict end-product quality levels through measuring the degree of

those qualities present during development. The Rome Air Development Center

(RADC) quality program (see Sec. 1.1) has established a model for viewing software

quality. Figure 2.2-2 depicts this model, showing a hierarchical relationship between a

quality factor, criteria, and metrics. Criteria and metrics are factor attributes.

Quality factors (e.g., reliability, usability, correctness, and maintainability) are user-

oriented terms, each representing an aspect of software quality. Thirteen quality

factors are used to specify the types of qualities wanted in a particular software

product. Product environment and expected use affect emphasis. For example, if

human lives could be affected, integrity, reliability, correctness, verifiability, and

* survivability would be emphasized. If the software is expected to have a long life

cycle, maintainability and expandability would be emphasized.

Criteria are software-oriented terms representing software characteristics. For

example, operability and training are criteria for usability. The degree to which these

characteristics are present in the software is an indication of the degree of presence

of an aspect of quality (i.e., a quality factor).

Metrics are software-oriented details of a characteristic (a criterion) of the software.

Each metric is defined by a number of metric elements. The metric elements enable

quantification of the degree of presence of criteria and, hence, factors. "Are all the

* errors specified which are to be reported to the operator/user?" is an example metric

element question for the criterion operability (see worksheet 0, OP.l(2), App. A).

Using the methodology described in Section 4.0, the acquisition manager is responsible

for specifying needed quality factors by priority, with quality levels commensurate

3-1

-"" * .'- . :ck*-

Table 3.1-1 Softwvare Quality Factor Definitions and Rating FormulasI

.SCOI .ON CONC ERN QULI TfACTOR [LEJITION RATING FORMULA

fFCE NCI E PA T~E X7[N r TO WICH& A RE ORCE IS osT pZED I. e 5 TORAGE I- AC TUAI RESOURCE UTILIZATION
SPACE PROCESSiNOTIME: LOMMUN.CATI(FI. EME; ALLOCATED RESOJRCE L)TI..IZATiON

INTEGRITY i X IFENY TO WICH THlE SOF TWARE WILL PEFORM WITHOUT I. ERR
FAILURE S OUE TO JNAUTIOPIZE D ACL[ST TO TIFF CODE OR DATA O NES OF CODE
WITHINA SPEC IPIED TIME PIERIOD

PE RFFORMANCE RE LLT Y ERXTE NT TO WHIICH THE SOFTIWARE W.LL PE RFORM WITHTOUT ANY I- ERRORS
FA1LURES WITHIN A SPECIFIED TIME PERIOD LINES OF CODE

SURV,VABITY ERX'E NY TO WH' FHI THlE SOFTWARE WIL PERFORM ANDSuPPORT I ERRORS
CRITICAL FUNC TIONS WMTHOUT FAILU~RES WKTIIN A SPECIFIED TIME LINES Of CODE
PERIOD WPE N A PORTION OP THFE SYSTEM S INOP-ERABL.E

USABILITY RE LATIVE E FFORT FOR USING SOFTWARE (TRAINING AND I LABOR DAYS TO USE
OPERATIONp, Ae FAMILIARTATION INPUT PREPAkATON LABOR YEARS TO OfEVELOP
EVEC0TION O)UTPLT NTE RPRE TATION)

CORRECTNESS EXITENT TO WICH THlE SOFiTWVARE CONFORMIS TO ITS I ERRORS
S PECIFICATIONS AND STANDARDS LINES Of CODE

[DESIGN MAINTAINABILITY E ASE OF E F FORT FOR LOCAT ING AND FIFING, A SOFTYWARE FAILURE 1 0S (AV ERAGE LABOR-DAYS TO FIX,.
WJ TI.IN A SP ECIFED TIME PERIOD

YE RIP IABIL-TY R ELATIVE EFFORT TO VERIFY TIFF SPECIFIED SOFTWARE OFPERATION I EFFORT TO VERIFY
AND PERFORMANCE EFFORT TODEVELOP

XPANDFABILITY RELATIVE EFFORT TO INCREASE THlE SOFTWARE CAPABILITY OR I- EFFORT TO EXPAND
PERFORMANCE ByP ENHIANCING CURRENT FUNCTIONS OR AY ADDING EFFORT TOOEVELOP
NEWFJNCTIGNSOR DATA

FLEXIBILITY EASE OF E FFORT FORCrIANCING TIFF SOFTWARE F 1 005 (AVERAGE LABOR-OAYS TO
FUNCTION', OR DATA TILSATSFY OTlIERREQUIREMtr CHPANCE)

ADPTPATION INTE ROPERPAEILIT Y RELATIVE EfFFORT TOCOILE THEF SOFTWARE OF ONE SYSTEM TO T. EFFOR1T OCOUPLE
f~ SOFTWARE OF ANOTFIER SYSTEM EFFORIT TO DFEEOP

PORTABILITY RELATIVE EFFORT TO TRANSPORT THE SOFTWARE FOR USE IN I- EFFORT TO TRANSPORT
ANOTHER ENVIRUNMENT IHAROWARE CONFIGURATION ANDIOR EFrORT TODEVELOP
SOFTWARE SYSTEMENVIRONMENTL

REUSABILITY RElATI VE EFFORTA TO [UNVERFT A SOFTWARE COMPONENT FOR USE I EFFORT TO CONVERFT
IN ANOTHER APLIIA ION EFFORT TOOE vE.OP

NOTE THEF RATING VALUE RANGE S FROM 0 TO 1 IF THE
VALUE IS LESS TITANS THE FATNOVA..UE IS
ASSIGNED TOO

3-2

L

with cost consideration.. Factor requirements are provided as part of the software

requirements (along with operational, performance, and design requirements). This

enables the corresponding criteria and metrics to be identified and used to measure

the degree of pretence of desired qualities at key review points during development,

allowing periodic predictions of the quality level for the final product. Metric

worksheets and scoresheets help in applying the metrics and in determining metric

scores.

3.1 SOFTWARE QUALITY FACTORS

Thirteen software quality factors are identified in Table 2.2-1, with the user concern

that characterizes the need for each type of quality. Quality factors are shown

grouped under one of three acquisition concerns: performance, design, or adaptation.

An acquisition manager specifying requirements for software will likely do so in a

DOD-STD-SDS format in four main areas: (1) software performance characteristics

(performance), (2) software design and construction (design), (3) anticipated software

expansion or reuse (adaptation), and (4) quality assurance (including quality metrics).

The similarity of areas and acquisition concerns enables the acquisition manager to

easily identify and select quality factor categories and specific factors of interest.

Quality criteria are similarly categorized (see Sec. 3.2); thus, selecting criteria and

metrics is simplified.

3.1.1 Factor Definitions and Rating Formulas

Quality factor definitions and factor rating formulas are shown in Table 3.1 -1. Rating

formulas quantify user concerns for the final product. The formulas use three types of i
measurements: (I) number of errors per lines of code (2) effort to perform an action

and (3) utilization of resources. Ratings should fall in the range from zero to one. The "]

rating formula for reliability is one minus the number of errors per lines of code. For

example, if one error per 1,000 lines of code occur during a given time period (e.g.,

during operational testing and evaluation) the rating formula shows a reliability level
of 0.999 (1-1/1,000 = 0.999).

During software development, metrics are applied to software products, and a metric

score is calculated for the appropriate factors. This metric score is an estimation (or

3-3
-. " 3 - 3

- - -- - - - - - - - - - -.-
r_ -, -.:. : , ... - ...,° .- -/ .- .- . .. -. -. - -.. .' .. -,. ,- -,.,- - • .-. ,.-.-,,. ., .'.',.. -. -,%

W l' , , . - . . - ° - . -. - - . . . /

:A I - -.

AQUISIT ION I4
CONCFRN'N SOFTWVARE OPERATIOINALlITESTING PRODUCION ANEr SOFTWARE OEAOFA.TSIG PRODUCTION AND O.
QUALITY FACTOR DEVELOPMENT ANDIEVAL.UAIO EPOMT DVLOEN ADEAUAION DEPLOYMENT

PERFORMANCE

EfFICIENI.Y1

RP,.IABLITY I SAME AS FOR INITIAL

SURVIVABIL ITY

USABILITY J UEARURE

DESIGNr

CORRECTNESSI
I I I~ SAME AS FOR INITIAL

MAINTAINABILITY L USE.AS REQUIRED

VERIFIABILITY

ADAPTATION

EXTPANOABIlTY 1 1
FLEXIBILITY J
INTEROPERABILiTY (ARL (AR)

PORT ABILITY I
* ~REUJSABILITY II

* AIINEESTIMATION *RATING ASSESSMENT (ARE) AS REQUIRED

Figure 3.1-1 Rating Estimation and Rating Assessment Windows

43-

KV, .
B ~ dE ~ . * * ~ .* %

prediction) of what the .quality level will be for the final product. Figure 3.1-1
indicates the timeframes during which rating values are estimated through metric
scores (closed box) and the timeframes during which rating values can be assessed by
using actual data and the rating formula (dotted box). For example, the rating value
for reliability is estimated by using metric scores during software development.
During operational testing and evaluation and during production and deployment,

actual data on number of errors per lines of code become available to assess the rating
and evaluate predictions made during development. Exact correlations between
metric scores and rating values have not been established. Research has only shown

that higher metric scores during development result in higher quality end products.
Table 3.1-2 shows a range of values for each rating formula that might occur woen

using actual data (e.g., during production and deployment) to assess rating values. The
values shown are hypothetical

The following paragraphs describe the factors and rating formulas in each acquisition

concern category.

Performance. Performance quality factors deal both with the ability of the software
to function and with error occurrences that affect software functioning. Low quality
levels predict poor software performance. These quality factors are efficiency,

integrity, reliability, survivability, and usability.

Efficiency deals with utilization of a resource. The rating formula for efficiency is
in terms of actual utilization of a resource and budgeted allocation for utilization.
For example, if a unit is budgeted for 10% available memory and actually uses 7%, the

rating formula shows an efficiency level of 0.3 (1 - 0.07/0.10 = 0.3).

Integrity deals with software security failures due to unauthorized access. The rating

formula for integrity is in terms of number of integrity-related software errors

occuring during a given time (e.g., during operational testing and evaluation) and total
number of executable lines of source code. This formula is similar to the formula for
reliability; the difference is that reliability is concerned with all software errors,

and integrity is concerned only with the subset of errors that affect integrity. For
example, if three integrity-related errors per 10,000 lines of code occurred during
operational testing and evaluation, the rating formula shows an integrity level of

0.9997 (1 - 1/10,000 0.9997).

3-5

......~ k.. ',..... _ .,.,,." ..- ,..,-'.'.°'... .,.. ...-... *. .

-.

Tabe 31-2 QuaityFactor Ratng

Quality factor Rating formula Rating information

Efcec1- Actual utilization Value 0.1 0.3 0.5
Allocated utilization %/ utilization 90% 70% 50%

Integrity 1- Errors- Value 0.9995 0.9997 09999
Lines of code Errors/LOC 5/10,000 3/10,00 1/10,000

Reliability I. Errors Value 0995 0.997 -0.999

Lines of code E rrors/LOC 5/1,000 3/1,000 1/1,000

Survivability 1- Errors- Value 0.9995 0.9997 0.9999
Lines of code Errors/LOC 5/10.000 3/10.000 1/10,000

Usability 1- Labor-days to use Value 0.5 0.7 0.9
Labor-years to develop Days/years 5/10 16/20 10/100

Correctness I1- Errors Value 0.9995 0.9997 09999
Lines of cod Errors/LOC 5/10,000 3/10,000 9

Maintainability 1- 0.1 (average labor- Value 0.....j.... 09.Qj..* l.i...
__________days to fix Average labor-days 2.0 1 .0 0 5

Verifiability 11 Effort to verify Value 04 0.5 0.6
_________ Effort to develop % effort 60% 50% 40%

Exciandability I Effortto exoiand Value 0.8 -0.9 0.95
Effort to develop % effort 20% 10% 5%

Flexibility 1- 0.05 (average labor- nAU ,.,....... fA.... as....f9S
days to change) Avrg ao-as 40 20 10

Interoperability 1- Effort to Couple Value 0.9 0.95 0.99
Effort to develop % effort 10 5 11

Portability 1- Effortto transport Value 0.9 0.95 0.99
________I Effort to develop % effort 10 5 1

Reusability 1- Effort to convert Value 04 0.6 0.8
Effort to develop % effort 60 40 20 I

3-6

A%

S'.- - % 7 V Z WJW .= . - ~~.'.S . ." -

Reliability concerns any software failure. The rating formula for reliability is in

terms of total number of software errors occurring during a specified time and total
number of executable lines of source code. For example, if three errors per 1,000

lines of code occurred during operational testing and evaluation, the rating formula
shows a reliability level of 0.997 (1 - 3/1,000 = 0.997).

The concern with survivability is that software continue to perform (e.g., in a

degraded mode) even when a portion of the system has failed. The rating formula for

survivability is in terms of number of survivability-related errors (the subset of errors

that affect survivability) occurring during a specified time and total number of

executable lines of source code. This formula is similar to the formula for reliability.

Usability deals with relative effort involved in learning about and using software. The

rating formula for usability is in terms of average effort to use software (to train for
using it and to operate it) and original development effort. This formula considers size

of the software system in rating usability. It is recommended that effort to use be

expressed in labor-days and effort for original development be expressed in --

labor-years to maintain a scoring range consistent with that of other factors. For

* example, if 10 labor-days were required for training on a system that required 100

labor-years to develop, the rating formula shows a usability level of

0.9 (1 - 10/100 = 0.9); and if five labor-days were required for training on a system

that required 10 labor-years to develop, the rating formula shows a usability level of

0.5 (1 -5/10 = 0.5).

Design. Design quality factors deal mainly with software failure and correction. Low

quality levels usually result in repeating a portion of the development process (e.g.,

redesign, recode, reverify); hence the term design. The factors are correctness,

maintainability, and verifiability.

Correctness deals with the extent to which software design and implementation

conform to specifications and standards. Criteria of correctness (completeness,

consistency, and traceability) deal exclusively with design and documentation formats.

Under the three criteria there are no metrics dealing with content material affecting

software operation or performance. The rating formula for correctness is in terms of 2
number of specifications-related and standards-related errors that occur after formal

3-7

VW '0 V 5

- . 4 . - . .-..-.-..

release of the specifications and standards and total number of executable lines of

source code. This formula is also similar to the formula for reliability; the difference

* is that correctness is concerned only with that subset of errors related to violations of

specified requirements and nonconformance to standards. -'

Maintainability is concerned with ease of effort in locating and fixing software

failures. The rating formula for maintainability is in terms of average number of

labor-days to locate and fix an error within a specified time (e.g., during production

and deployment). For example, if an average of 0.5 labor-days were required to locate

and fix errors during production and deployment, the rating formula shows a

maintainability level of 0.95 (0 - (0.1 x 0.5) = 0.95).

Verifiability deals with software design characteristics affecting the effort to verify

software operation and performance. The rating formula for verifiability is in terms

of effort to verify software operation and performance and original development

* effort. This formula is similar to the adaptation, effort-ratio formulas. For example,

if 40% of the development effort is spent reviewing and testing software, the rating

formula shows a verifiability level of 0.6 (0 - 0.40/1.00 = 0.6).

Adaptation. These quality factors deal mainly with using software beyond its original

requirements, such as extending or expanding capabilities and adapting for use in

another application or in a new environment. Low quality levels predict relatively

high costs for new software use. Quality factors are expandability, flexibility,

interoperability, portability, and reusability.
,-,

Expandability deals with relative effort in increasing software capabilities or

performance. The rating formula for expandability is in terms of effort to increase

software capability and performance and original development effort. For example, if

". five labor-months were spent enhancing software performance for software that

orignally took 100 labor-months to develop, the rating formula shows an expandability

level of 0.95 (1 - 5/100 = 0.95).

Flexibility deals with ease of effort in changing software to accommodate changes in

requirements. The rating formula for flexibility is in terms of average effort to

change software to satisfy other (i.e., new or modified) requirements within a

3-8

.. . . . • - . *. ~, .-.- ,.. •*

specified time. For example, if an average of one labor-day was required to modify

software functioning during operational testing and evaluation, the rating formula

shows a flexibility level of 0.95 (1 - (0.05 x 1) = 0.95).

Interoperability is concerned with relative effort in coupling software of one system to
software of one or more other systems. The rating formula for interoperability is in
terms of effort to couple and original development effort and is similar to the formula t,

for expandability.

Portability deals with relative effort involved in transporting software to another

environment (e.g., different host processor, operating system, executive). The rating

formula for portability is in terms of effort to transport software for use in another

environment and original development effort and is similar to the formula for

expandability.

Reusability is concerned with relative effort for converting a portion of software for

use in another application. The rating formula for reusability is in terms of effort to

convert software for use in another application and original development effort and is ,

similar to the formula for expandability.

If adaptation effort is greater than original development effort, the effort-ratio "

formulas will yield a quality level value less than zero. In this case, the quality level -..

value is assigned to zero. (This situation is considered unlikely because it would

probably be less expensive to develop a new product than to adapt an existing one.)

3.1.2 Quality Factor Interrelationships V"

Relationships exist among quality factors; some relationships are synergistic and

*" others conflicting. Specifying requirements for more than one type of quality for a

product can possibly have either a beneficial or an adverse effect on cost to provide

the quality. Factor relationships and relative cost to provide are discussed in Section

4.0.

::- ...'-'.-

3-9
Z t

,, , ..-. ",r.,. .. " . ",." " ". ".".'. " '. '....."° "O' " .' j , ..".,,,"J," ,'p",, ",.' % '6 . ' ." '" "" .' . . J"¢ __ __ .. :

Table 3.2-1 Software Quality Factors and Criteria

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION

R U C V E f P R 1
C F T L R A R I R F, E T R U
0 O E I V B R N1 A x E T S

C G A I I E T F N I R A A
I R 1 V1 L C A I D B 0 B B
E I I A I T I A A I P I IN T L B T N N B 1 L E I L

T C Y I I Y E A I I I A I I
I T L S B L L T A T T

0 Y I I Y B Y Y
N T L T T I

Y I Y V L
C TI
0 Y T
NY
C

R CRITE RION/ACRONYM E I R S U C IM V E F I P R
N F G L. V S R A E K K P 0 U

S ACCURACY AC K
E ANOMAL.Y MANAGEMENT AM x
R AUTONOMY AU K

F DISTRIBUTEDNESS DI K
0
RI EFFECTIVENESS COCESSIGIO EP K
R EFFECTIVENESS CROMMUSNCTO EC
A1 EFFECTIVENESS- STORAGE ES K
N O-ERABILITY OP x
C
E RECONFIGURABILITY RE X

SYSTEM ACCESSIBILITY SS K
TRAINING TN K

D
E COMPLETENESS CPIK
S ONSISTENCY CS K

.RACEABILITY TC K
N VISIBILITY VS K

APPLICATION INDEPENDENCE AP K
A AUGMENTABILITY AT K
D COMMONALITY CL X
A DOCUMENT ACCESSIBILITY DO x

T FUNCTIONAL OVERLAP P0 K
A FUNCTIONAL SCOPE FSK

T GENERALITY GEK KK

I INDEPENDENCE ID K K K
0 SYSTEM ICLARITY STK

N
SYSTEM COMPATIBILITY SY K
VIRTUALITY VR x

G MODULARITY MO A K x x K

N SELFODESCRIPTIVENESS SD K K K
E SIMPLICITY SI K K

R
A

IL

3-10

% %

% *:10-- *.

1R.

3.2 SOFTWARE QUALITY CRITERIA

Criteria are software-oriented terms representing software characteristics. Software

quality criteria can be grouped under the same three aquisition concerns as quality

factors: performance, design, and adaptation. Table 3.2-1 shows the relationship of

criteria to quality factors. Four categories for criteria are shown: performance,

design, adaptation, and general. Each criterion is an attribute of one or more quality

f actors. The criteria in the first three categories are solely attributes of factors

within the same acquisition concern (i.e., performance, design, and adaptation).

Criteria in the fourth category are factor attributes within more than one acquisition

concern.

Criteria and factors within each category are listed alphabetically for easy

referencing. Alphabetizing by name or by acronym gives the same sequence. Criteria

definitions are listed in Table 3.2-2.

3.3 SOFTWARE QUALITY METRICS

Metrics are software-oriented details of a software characteristic (a criterion). Each

criterion consists of one or more metrics. Each metric is an attribute of only one

criterion. Table 3.3-1 lists the name and acronym of each criterion (in alphabetical

* order) and the name and acronym of each metric that is an attribute of that criterion.

Metric acronyms are acronym extensions of the parent criterion. For example, the

acronym for the criterion commonality is CL; the acronym for the three metric

attributes are CLAl, CL.2, and CL.3.

Each metric is defined by one or more metric elements. Metric elements are detailed

questions applied to software products; answers to them enable quantification of

metrics and of the parent criterion and factor. Metric elements are designated by

acronym only (no name) and are listed on the metric worksheets. Acronym designation

* is an extension of the parent metric acronym. For example, the 14 metric element

acronyms for the metric CL.1 are CLAl (1) through CL.1 (14).

3

- ---. .

Table 3.2-2 Quality Criteria Definitions

ACQ.
UISITION 2

CON- CRITERION ACRONYM DEFINITION
CERN-

ACCURACY AC * Those characteristics of sotware which provide the required orecision in
calculations and Outouts

ANOMALY MANAGEMENT AM * Those characteristics of software which orovide for continuity of ocerations
under and recovery from non-nominal conditions. -

AUTONOMY AU * Those cnaracteristics of software which determine its non-depenoency on
P interfaces and functions

E DISTRIBUTEDNESS Di 9 Those characteristics of software which detemrine the degree to wnch softwre
functions are geographically or logically separated within tne system

R EFFECTIVENESS-COMM EC 0 Those cnaracteristics of the software wnicn provide for minimum utilization of
F communications resources in cerforming functions

o EFFECTIVENESS-PROCESSING EP * Those characteristics of the software which provide for minimum utilization of
processing resources in performing functions.

R EFFECTIVENESS-STORAGE ES e Those characteristics of the software which provide for minimum utilization of
M storage resources
A OPERABILITY OP * Those characteristics of software which determine operations and procedures

N concerned with operation of software and which provide useful inputs and
outputS which can be assimilated

C RECONFIGURABILITY RE . Those characteristics of software which provide for continuity of system
E operation when one or more processors. storage units, or communication links

ta'is
SYSTEM ACCESSIBILITY SS * Those characteristics of software which provide for control and audit of access to

the software and data
TRAINING TN * Those cnaracteristics of software which provide transition from current operation

and provide initial familiarization

D COMPLETENESS CP e Those characteristics of software which provide full implementation of the
functions requiredE CONSISTENCY CS 0 Those characteristics of software which orovide for uniform des-gn and
imoiementtion techniques and notation

I TRACEABILITY TC * Those characteristics of software which provide a thread of origin from the

G imoiementation to the requirements with respect to the soecified development
envelooe and operational environment

N VISIBILITY VS 0 Those characteristics of software which provide status monitoring of the

development and operation

APPLICATION INDEPENDENCE AP a Those characterstics of software which detemrineits nondepenciency on
database system microcode, computer architecture, and algorithms

AUGMENTABILITY AT a Those characteristics of software which provide for expansion of capability for
functions and data

COMMONALITY CL e Those characteristics of software which provide for the use of interface standards

A for protocols, routines, and data representations

D DOCUMENT ACCESSIBILITY DO o Those characteristics of software which provides for easy access to software and
selective use of its components

A FUNCTIONAL OVERLAP FO e Those characteristics of software which provide common functions to both
p systems
T FUNCTIONAL SCOPE FS * Those characteristics of software which provide commonality of functions among

A ~applications .

GENERALITY FE * Those cnaraCter isti cs of software which provide breadth to the functions
T performed with resoect to the aoplication

I INDEPENDENCE ID a Those characteristics of software which determine its non-deoendency on
0 software environment (computing system, operating system utilities. input. L

outout routines, libraries) L.
N SYSTEM CLARITY ST * Those characteristics of software whcih orovide for clear description of program

structure in a non-complex.and understandable manner
SYSTEM COMPATIBILITY SY 0 Those characteristics of software wnich provide the hardware, software, and

communication compatibility of two systems

VIRTUALITY VR e Those characteristics of software which present a system that does not require
user knowledge of the onysical. logical or tooological characteristics

" G MODULARITY MO * Those characteristics of software wnich provide a structure or h igniy conesiwe

E components with optimum coupling
SELF-DESCRIPTIVENESS SD * Those characteristics of software which provide explanation of the It I

"N im plementation of functions
j E SIMPLICITY SI • Those characteristics of software which orovide for definition and

* R implementation of functions in the most noncompiex and understandable 7.

A manner

a %

.......... . I

"' : ''* " " " ' " " " " "" " * - t"' ..-- .. '" . ''' ' " " " " ". . " " " " "-
"

.'

Table 3.3-1 Quality Metrics Summary

CRITERION METRIC

NAME ACRONYM NAME ACRONYM

ACCURACY AC ACCURACY CHECKLIST AC.1

ANOMALY AM ERROR TOLE RANCE/CONTROL AM.1
MANAGEMENT IMPROPER INPUT DATA AM.2

COMPUTATIONAL FAILURES AM.3
HARDWARE FAULTS AM.4"
DEVICE ERRORS AM.S
COMMUNICATIONS ERRORS AM 6
NODE/COMMUNICATION FAILURES AM.7

APPLICATON AP DATA BASE MANAGEMENT IMPLEMENTATION AP.1
INDEPENDENCE INDEPENDENCE

DATA STRUCTURE AP.2
ARCHITECTURE STANDARDIZATION AP 3MICROCODE INDEPENDENCE AP 4
FUNCTIONAL INDEPENDENCE AP S

AUGMENTABILITY AT DATA STORAGE EXPANSION AT.1
COMPUTATION EXTENSIBILITY AT.2
CHANNEL EXTENSIBILITY AT.3
DESIGN EXTENSIBIUTY AT.4

AUTONOMY AU INTERFACE COMPLEXITY AU1-
SELF-SUFFICIENCY AU.2

COMMONALITY CL COMMUNICATIONS COMMONALITY CL.1
DATA COMMONALITY CL.2
COMMON VOCABULARY CL.3

COMPLETENESS CP COMPLETENESS CHECKLIST CP I

CONSISTENCY CS PROCEDURE CONSISTENCY CS 1
DATACONSISTENCY

CS .2

' DISTRIBUTEDNESS DI DESIGN STRUCTURE Di 1

DOCUMENT DO ACCESS TO DOCUMENTATION DO.1
ACCESSIBILITY WELL-STRUCTURED DOCUMENTATION DO 2

EFFECTIVENESS- EC COMMUNICATION EFFECTIVENESS MEASURE EC.1
COMMUNICATION

EFFECTIVENESS- EP PROCESSING EFFECTIVENESS MEASURE EP.A
PROCESSING DATA USAGE EFFECTIVENESS MEASURE EP 2 - -

EFFECTIVENESS-STORAGE ES STORAGE EFFECTIVENESS MEASURE ES.I

FUNCTIONAL OVERLAP FO FUNCTIONAL OVERLAP CHECKLIST FO.1

FUNCTIONALSCOPE FS FUNCTION SPECIFICITY FS.,
FUNCTION COMMONALITY FS.2
FUNCTION SELECTIVE USABILITY FS.3

GENERALITY GE UNIT REFERENCING GE.1
UNIT IMPLEMENTATION GE.2

INDEPENDENCE ID SOFTWARE INDEPENDENCE FROM SYSTEM ID 1
MACHINE INDEPENDENCE ID,2

MODULARITY MO MODULAR IMPLEMENTATION MO 1
MODULAR DESIGN MO 2

OPERABILITY OP OPERABILITY CHECKLIST OP 1-
USER INPUT COMMUNICATIVENESS OP 2
USER OUTPUT COMMUNICATIVENESS OP3 -.-

RECONFIGURABILITY RE RESTRUCTURE CHECKLIST RE. I

SELF-DESCRIPTIVENESS SD QUANTITY OF COMMENTS SD 1
EFFECTIVENESS OFCOMMENTS SOz
DESCRIPTIVENESS OF LANGUAGE SD3

SIMPLICITY SI DESIGN STRUCTURE 5SI1
STRUCTURED LANGUAGE OR PREPROCESSOR SI 2
DATA AND CONTROL FLOW COMPLEXITY S13
CODING SIMPLICITY S14
SPECIFICITY SI S
HALSTEAD'S LEVEL OF DIFFICULTY MEASURE SI 6

3-13

S-- ,."*-.'•

Table 3.3-1 Quality Metrics Summary (continued)

CRITERION METRIC

NAME ACRONYM NAME ACRONYM

SYSTEM ACCESSIBILITY SS ACCESS CONTROL SS.1
ACCESS AUDIT SS.2

SYSTEM CLARITY ST INTERFACE COMPLEXITY ST.I
PROGRAM FLOW COMPLEXITY ST.2
APPLICATION FUNCTIONAL COMPLEXITY ST.3
COMMUNICATION COMPLEXITY ST 4
STRUCTURE CLARITY ST.S

SYSTEM COMPATIBILITY SY COMMUNICATION COMPATIBILITY SY 1
DATA COMPATIBILITY SY 2
HARDWARE COMPATIBILITY SY 3
SOFTWARE COMPATIBILITY SY 4
DOCUMENTATION FOR OTHER SYSTEM SY S

TRACEABILITY TC CROSS REFERENCE TC.

TRAINING TN TRAINING CHECKLIST T
N I

VIRTUALITY VR SYSTEM/DATA INDEPENDENCE VR 1

VISIBILITY VS UNITTESTING iS .
INTEGRATION TESTING '/5.2
CSCI TESTING VS 3

"6- . .. ,

%- %
%I

7- -*

, .J

"*1

3-14 •"-. '

4 ;'.

- t

.! .~~~~~~~~~~~~~~~~~...... -..... ,.....-.,:...- , , .. , -:.., "'--'-"

3.4 METRIC WORKSHEETS

Metric worksheets are contained in Appendix A. The worksheets contain metric

elements as questions. Software products (specifications, documents, and source

listings) are used as source information to answer questions on worksheets; answers are

then translated into metric element scores (yes = 1, no = 0, and a formula answer

results in a score from 0 to 1). This enables scoring of the parent metric, criterion,

and factor and results in a quality level indication for the product.

Seven different worksheets are applied in different development phases. Table 3.4-I

indicates the timeframe during an acquisition life-cycle phase when a worksheet is ---

used, shows the software level of abstraction at which the worksheet is applied, and

lists key terminology used within the worksheet.

Worksheet 0 is applied to products of system/software requirements analysis. The

worksheet is applied at the system level. (For large systems, software may not be a

discernible component in the design with separate requirements at the system level.

In this case, worksheet 0 is applied at the system segment level.)

Worksheet I is applied to products of software requirements analysis. A separate

worksheet is used for each CSCI.-

Worksheet 2 is applied to products of preliminary design. A separate worksheet is

used for each CSCI.

Worksheets 3A and 3B are applied to products of detailed design. A separate

worksheet 3A is used for each CSCI. A separate worksheet 3B is used for each unit of

a CSCI. Worksheets 3A and 3B are applied together; answers on 3B worksheets for

CSCI units are used in scoring the 3A worksheet for that CSCI.

Worksheets 4A and 4B are applied to products of code and unit testing. Worksheets 4A

and 4B are applied in the same manner as 3A and 3B. A separate worksheet 4A is used

for each CSCI, and a separate worksheet 4B is used for each CSCI unit.

3-15

U°

* Table 3.4-1 Metric WVorks heet/Life-Cycle Correlation

Life-Cycle

L aeC cl Demonstrati on
Activity & Validation Full-Scale Development (FSD)

System/ Software
Software Requirements Preliminary Detailed Coding & CC CSCI - Laval System

Application Level) Requirements Analysis I Design Design Unit Testing integration & Testing lntegaioTerminology Analysis TestingTsin

System 0 System------------------
0 System Metric

function Worksheet I
0 CSCI 0II

0 CSCI MetricII
CSCI 0 Software WorksheetII-

fijnction1
_______I (Selected metric questions are

a C50I I reapplied during the integration I
CSCI 0 Top-level CSC Metric I and testing phases as indicated in the I

Wokh2 quality attribute correlation table in

I Appendix A.)
0 CSCI
0 Top-level CSC Metric Metric

CIO C Lower-level Worksheet Worksheet I
CSC 3A 4A II
C nitII

UNI C nit Metric Metric II
Worksheelt WorksheetII

38 48 I-

S. 3-16

For the remainder of the development cycle, selected metric questions are reapplied

as indicated in the quality attribute correlation Table in Appendix A.

Metric worksheets are designed to be applied at specific levels (e.g., CSCI, unit).

Worksheets can be applied at other levels; however, some questions may not be
applicable. For example, if worksheet I were applied to a CSCI function, question

CP.1(6) should be deleted or reworded because it only applies at the CSCI level.

Metric worksheets are designed to be applied to software development products I
identified in DOD-STD-SDS. The minimum product set is listed by software
development phase in Table 3.4-2. Each product is identified by title and by DID

number. Information from the entire set of products for a particular phase is needed

as source material to answer metric questions on the worksheet applicable to that

phase. It is not necessary to specify the complete product set for each acquisition,

only to have equivalent information available to answer worksheet questions. For

example, when acquiring a small system, information regarding the QA plan and

software standards may be included as part of the software development plan.

3.5 FACTOR SCORESHEETS

Factor scoresheets are contained in Appendix B. There are 13 factor scoresheets, one

for each software quality factor. Scoresheets are used for translating information at

the metric element level on the worksheets into a quality level score for a quality

factor. Each scoresheet has blanks for the factor and for all attributes of that factor

(i.e., criteria, metrics, and metric elements). Worksheet information is transferred to -.

the scoresheets at the metric element level. "Yes" answers are scored as 1; "no"

answers are scored as 0; and numeric answers resulting from formulas are transferred

directly to scoresheets (scoring range from 0 to 1). Scores are then calculated for the

parent metrics, criteria, and factor according to the hierarchical (attribute)

relationship indicated on the scoresheet.

3-17

.:, .;.: :~~. , : .

Table 3.4-2 Software Development Products

Phase/Product Title Applicable DID

System/Software Requirements Analysis .

System/Segment Specification DI-S-X 101

Softwae Development Plan DI-A-X 103

Preliminary Software Requiremerts Specification DI-E-X 107

Operational Concept Document DI-M-X125

Software Quality Assurance Plan DI-R-X 105

Software Problem/Change Report DI-E-X 106

Software Standards and Procedures Manual DI-M-X 109 . -

Preliminary Interface Requirements Specification DI-E-X 108

Software Requirements Analysis

Software Requirements Specification DI-E-X107 ,

Interface Requirements Specification DI-E-XIO

Preliminary Design

Software Top-Level Design Document DI-E-XI 10

Software Test Plan DI-T-X 116

Preliminary Software User's Manual DI-M-X121

Preliminary Computer System Operator's Manual DI-M-X120

Detailed Design

Software Detailed Design Document DI-E-X1 11

Software Test Description DI-T-X117

Data Base Design Document DI-E-X1 13

Interface Design Document DI-E-X1 12

Coding and Unit Testing

Source Code/Listings (Appendix)

Preliminary Software Test Procedure DI-T-X1 18

CSC Integration and Testing

Software Test Procedure DI-T-X1 18

CSCI-Level Testing

Software Product Specification DI-E-X 114

Software Test Report(s) DI-T-X119

Software User's Manual DI-M-X121

Computer System Operator's Manual DI-M-X 120 r-

System Integration and Testing

Software Product Specification DI-E-X1 14

Software Test Report(s) DI-T-X119

Software User's Manual DI-M-X 121

Computer System Operator's Manual DI-M-X120

3-18 V
,-* 5..-%.. ...

:... ., . /'. . . . , . '. . . ' .. " ' / .. " .. . : .. ' ' . . ' '- . ,. ' ,. ' . . ,.%. , . ..
.% . "' .'-''-" - " '- "% ' - ' -'' , - -. ," "'' """"- '"'.''. ." " ,

e n's
' ' .

ILI ,", . -. /'= . - . ,..

4.0 SOFTWARE QUALITY SPECIFICATION METHODOLOGY

This section describes a methodology for determining and specifying software quality

requirements for command and control applications. The methodology includes

procedures for determining and specifying quality factor requirements, techniques for

making quantifiable tradeoffs among quality factors, techniques for relating quality

levels to cost over the software life cycle, and procedures for analyzing quality

measurement data.

Methodology Overview. Specifying software quality requirements is part of a larger

process for using quality metrics in software acquisition management. Figure 4.0-1

shows this process in two major parts: software quality specification, including """

assessment of compliance with requirements, and software quality evaluation

(measurement of achieved quality levels). This document, the Software Quality

Specification Guidebook, provides guidance for specification. The Software Quality

Evaluation Guidebook provides guidance for evaluation.

In Section 2.0, two quality metrics functions-specification and monitoring-were

described. Specification includes identifying and detailing quality requirements and

monitoring includes gathering and reducing data, comparing results with requirements,

and taking corrective action if necessary. Section 4.0 groups these functional activities

into two slightly different categories-specification and evaluation-to enable separating

the guidebooks for personnel who will be performing different functions. Software

quality specification, as shown in Figure 4.0-1, includes identifying and specifying

requirements and assessing compliance with those requirements since these are the

responsibility of System Program Office (SPO) personnel. Results of compliance

assessment are used to initiate corrective action. Software quality evaluation includes

only data collection and analysis and generation of the Software Quality Evaluation ..

Report since these are the responsibility of the development contractor or an

independent verification and validation (IV&V) contractor (or an Air Force organization,

as is discussed in Sec. 2.3). "-, 0

The process begins early in the system life cycle-usually during system demonstration '

and validation. We assume that a description of the nature of the system and system

needs or requirements exists. This description could be a statement of work or a draft

4-1

, -___
,,~~~~~~~~~~~~~..,_........-..,.. "-... '.....'...... "...' .,,.,

• ,"'"'."".; ".', ',', .L' '," i "-" :.' ::,_ .: _ ,T'_,': '_:' . . /" T'_, • , ..'-':-'..-.-.'-..,,..,.. .- _.. . .-.. . .,.. ,.. .L

I.

a.-.ALEFO ORA

REIW RCES

SOFTWARE QUALITY COMPLIANCE
SPECIFICATION ASSESS COMPLIANCE VARIATIONS

GUIDEBOOK WITH REQUIREMENTS

SPECIFY SOFTWARE SYSTEM
--Y-TEMNEED--- QUALITY REQUIREMENTS -.- :REQUIREMENTS

SYTM*ED SPECIFICATION I

SOFTWARE QUALITY SPECIFICATION--------+

'V.. SYSTEMfSOFTWARE
DEVELOPMENT

AND REVIEW%

APPLY SOFTWARE YTfSFWR N
QUALITY METRICS YTiSTWR

1 PRODUCTS
SOFT WARE QUALITY

EVALUATION ----

GUIDEBOOK

QUALTY LVELS*~'~EVALATIO

ASSESS PRODUCT SOFTWARE QUALITY '

REPORT

SOFTWARE QUALITY EVALUATION

Figure 4.0-1 Software Quality Specification and Evaluation Process

4-2 K%
%L

a'.e % 4 a \ a * * * *~a.

system specification and is the primary basis for identifying software quality factor

requirements. A series of procedural steps is performed to determine specific software

quality needs and to specify quality requirements. Steps include polling groups such as

the Air Force using command and the Air Force Logistics Command (AFLC) in order to

provide a comprehensive set of operational and support quality requirements from a

quality factor point of view. These steps could be performed by the SPO or the

development contractor or through awarding a separate contract.

Software quality requirements are entered into the system requirements specification

and are treated as contractual obligations (just the same as technical requirements). As

the system contractor proceeds with development, quality requirements from the system

requirements specification are allocated to lower level specifications and finally

-' assigned to units within the software detailed design document in a manner similar to

that for other requirements. This requirements flow is shown in Figure 4.0-2. Each

time during the cycle that development products are released (usually at major review

points such as system design review (SDR), software specification review (SSR),

preliminary design review (PDR), and critical design review (CDR)), quality metrics, in

the form of metric worksheets, are applied to the products. Raw data are then used to

calculate scores indicating quality level achieved for each quality factor, and these

".* scores are compared to specified requirements. ,-

Application of metrics and scoring of achieved product quality levels are performed by -

the development contractor to show compliance with quality requirements. It is

anticipated that product evaluation will also be performed in parallel by another group

such as an IV&V team, the AFPRO, SPO Software Engineering, or Product Division

Software Quality Assurance, as is discussed in Section 2.3. Data collection and analysis
results are documented in a Software Quality Evaluation Report (see App. C). This

report is reviewed separately at major review points. The report is included in the
* review package released before the review date. The SPO uses these results to assess

compliance with quality requirements and (1) approves or disapproves of compliance

.* variations at the review and/or (2) respecifies quality requirements and ensures that

changes are reflected in the system requirements specification.

-. Use of the Methodology and Guidebooks. The methodology and guidebooks were designed

primarily for use on projects during which quality requirements are specified early in the

4-3
.""4 -. - ... ".-* - -'.

JI

I*

= ° ,== . - "."° . . .-. r ¢ ; :. . " =*"* ' . " " = " -. ". . * .= • = ."= . = .= . .Z7. *-

SRR SOR SSR PDR CDR EQUIVALENT
SPECIFICATION

7 7'17 '7 17 LEVIEL/TYPE

(MIL-STD-490)

SOFTWARE SYTMA
QUALITY REQUIREMENTS
REQUIREMENTS SPECIFICATIONALO TINFQUIY

REQUIREMENTS TO SYSTEM
SEGMENTS

B-1 V

"'*I" - -- - - SEGMENT' ,,~
°I ALLOCATION OF QUALITY REQUIREMENTS

TO SOFTWARE AND HARDWARE C1i

HARDWARE SOFTWARE
" REQUIREMENTS REQUIREMENTS

SPECIFICATION SPECIFICATION ALLOCATION OF QUALITY

- ... REQUIREMENTS TO
SOFTWARE COMPONENTS (WITHIN CSCI'S)

SOFTWARE TOP. C-5

LEVEL DESIGN
DOCUMENT ASSIGNMENT OF

QUALITY
REQUIREMENTS TO

SRR * SYSTEM REQUIREMENTS REVIEW C-UIS C

SDR = SYSTEM DESIGN REVIEW SOFTWARE
SSR . SOFTWARE SPECIFICATION REVIEW DETAILED DESIGN
PDR PRELIMINARY DESIGN REVIEW DOCUMENT

CDR. CRITICAL DESIGN REVIEW
* SEPARATE SPECIFICATION NOT ALWAYS USED

Figure 4.0-2 Flow of Software Quality Requirements

%* o .'

-.-,iZ

,4l-4- -

life cycle and achieved quality levels are evaluated periodically during development as
was depicted in Figure 1.4-1. The methodology and guidebooks can also be used outside

the life-cycle context to evaluate particular products such as a specification, design
document, source code, or proposal. The purpose might be to evaluate reliability or
maintainability of an operational product to determine if it is suitable for an application,

to evaluate and compare quality levels of two products for purchasing, or to determine
reusability of an operational product as an aid in determining adaptation costs for a new

application. The purpose might also be to evaluate quality aspects of new-business
proposals or system specifications to help determine a competitive contract award. J
The methodology is similar regardless of context. Select important factors, criteria, and

metrics. Select appropriate worksheets. Collect data and analyze results. Factor

selection should be simplified for applications outside the life-cycle context because it is
unlikely that factor cost trades would be performed; however, it is very important that

factor interrelationships still be considered to avoid misinterpreting factor scores
(explanation in Sec. 4.1.3). Criteria and metrics selections follow factor selection and
should consider environmental and application particulars.

Selecting appropriate worksheets requires care to ensure desired results. In using the

methodology for a new project with distinct development phases and reviews, a set of
products is available at each review point. The metric worksheets are designed to be
applied to these products. The products assumed to exist at the end of each software

development phase are identified by title and data item description (DID) number in
Table 3.4-2. To use the worksheets outside this life-cycle context, the product being

evaluated should be matched as closely as possible to products identified in Table 3.4-2,

and then the corresponding worksheets can be selected. For example, the technical

portion of a proposal might correspond closest to a system and/or system segment

specification or to a software requirements specification. Worksheet 0 and/or I would
be chosen and appropriate questions selected. When the source code is available for an

operational product, worksheets 4A and 4B would be used. If the detailed design
- documentation were available, worksheets 3A and 3B would also be used. Data

collection and analysis results can be reported using the Software Quality Evaluation ..
Report (see App. C)."""1

4 -5

.,%%N

SPACIA SOTAR UAIYREUREET
p COMPLIANCE

SPECIFYiAEQUUY EUREETS*%

QUAALITY

SPECIFICATIO QUALITY C RTA REQUIREMENTS

QA ITY AiREUITMNT

METRICA EVALUAION BAES '

QUI
G UO

INTERFACE

LSEI:CTO

QAIYCIIIARQIEET

SELCTAN

Figure 4.0-3 Procedures for Specifying Software Quality Requirements

a.,

.4-

Specification Procedural Overview. Software quality specification is divided into two

separate processes (as is shown in Fig. 4.0-1): specify software quality requirements and

assess compliance with requirements. The procedures for each of these are shown in
Figures 4.0-3 and 4.0-4 and are arranged in chronological sequence-factors, criteria, and

metrics-reflecting the three levels of detail of the hierarchical quality model.

Sections 4.1, 4.2, and 4.3 describe the detailed procedural steps for specifying software

quality requirements. The steps are organized under three procedures (as is shown in
Fig. 4.0-3): (1) select and specify quality factors, (2) select and specify quality criteria,

and (3) select and qualify quality metrics. These procedures may all be performed at one

time if enough details are known to be able to work with the criteria and metrics.
Procedures may also be performed at different points in time but must be performed

sequentially. That is, factors must be selected first, then criteria, then metrics. Also, it

is recommended that the procedures be performed more than once; working through the

procedures to a greater level of detail will often affect initial assumptions or decisions.

The procedures only aid in a decision-making process for which there are no right

answers, only answers best meeting user and system needs within cost and schedule

constraints. Section 4.4 describes the procedural steps for assessing compliance with

requirements (see Fig. 4.0-4).

4.1 SELECT AND SPECIFY QUALITY FACTORS

This procedure consists of four steps:

a. Identify functions (step I).

b. Assign quality factors and goals (step 2).

c. Consider interrelationships (step 3).

d. Consider costs (step 4).

Steps I and 2 establish the quality goals; steps 3 and 4 consider the feasibility of

achieving those goals. In the first step, each function which is supported by software and

which will have separate quality requirements is identified. In step 2, quality factors are
assigned to each separate function, and initial quality goals are established for each

factor. In step 3, factor interrelationships (among the factors assigned to one function)

are examined, and possible effects on quality goals are explored. In the fourth step,

hS."4-7 .

4 6'
-. -. -- - - , ,•.- -- • "• -. .- . .- ,-'". - . *- , -I ", S """' ,#. '..'''': -£ .,.,2' -. ' -,_ . --'-' -71.' .

." ." " ." " .' ..L'.'" . .""" -' -. ...'- ." " - *" "'*" " *.. ". " " ",. z; " " : : "" . .. " ., ". **." . , . ."..-
,.,!.€. <.. . .._... ,. ,, , ., , .. ".. ,.' v~v ' ,:':'..'.." ** ,,* .-- '-'...-..**--. :--*- - -.-

ASSESS COMPLIANCE WITH REQUIREMENTS

REVIEW

REQUIREMENTS

TY ALLOCATION &
SOFTWARE QUALIT EVALUATION

EVALUATION FRUA
REPORT

DISCREPANCIES/
RECOMMENDATIONS

SOFTWAR E VRAIN
QUALITY VRAIN

SPECIFICATION
GUIOEIBOO

REVIEW METRIC
AND METRIC

ELEMENT
SCORES

SPECIFY SOFTWARE QUALITY REQUIREMENTS

Figure 4.0-4 Procedures for Assessing Compliance with Requirements

4-8

-~ -, - . ' "-.7'J L

factor life-cycle costs and cost variations due to interrelationships are examined, and

possible effects on quality goals are considered.

4.1.1 Identify Functions (Step 1)

Step I of this procedure is to identify each function which is supported by software and

which will have separate quality requirements.

Different system functions, and software supporting those functions, will likely have

." different quality needs. For example, a mission-dependent function should be more

flexible (to accommodate a change in mission needs) than one that is not. The system

description should be examined to identify all functions supported by software so that

separate quality requirements can be specified for each. System-level functions are

distinct operations performed by the system such as surveillance, identification, weapon

assignment, communications, and guidance. Table 4.1.1-1 identifies an example

command and control system and lists pertinent characteristics along with five system-

level functions: surveillance and identification, threat evaluation, weapons assignment

and control, battlestaff management, and communications. (This same system is used as

the example throughout this procedure.)

All five functions are supported by software, and quality factor requirements for these

functions can be allocated to operational software supporting them later in the life cycle

as software becomes more well-defined. However, to obtain a complete set of quality

requirements for the software, functions that are unique to software or that have

separate quality needs should also be identified. By examining the system description,

and with some knowledge of software development for command and control systems,

these functions can be identified. The example system has four software-unique

functions, as identified in Table 4.1.1-1: man-machine interface, executive, integrated

-. test function, and mission training. Software supporting the man-machine interface is

' usually separated functionally for software development because it has unique

performance and quality requirements associated with a human interface. Quality

requirements should also be considered separately. Executive software interfaces

operational software with computing hardware and hardware interfaces and is treated

* separately. Software supporting integrated (real-time) testing monitors system

" component operation and is treated separately. Mission training software is required to

* run in real time, using portions of the operational system, and is treated separately.

4-9

e.- V*
.. ' _,' ' . .", . , '" , . - "-" " . ' - " . " .". . " """. "--" ' . r ". " ". . ". ". . ". "" ". " 6.""

"- ,'.- - "'-,' ,":1,' '". '" ' . 4 '" ' ."t 6 . "; "." . -'- "'~ 6- "-. ' "." ""6 I , -[.,. - -" .'-,. .

Table 4.1.1-1 Characteristics and Functions for Example System

SYSTEM: Airborne Radar System

LIFE CYCLE: 15-20 years

COMPUTING SYSTEM: Centralized, Redundant Processors

SYSTEM FUNCTIONS:

, Surveillance and Identification*

. Threat Evaluation

* Weapons Assignment/Control*

0 Battlestaff Management

0 Communications*

SOFTWARE - UNIQUE FUNCTIONS:

* Man-Machine Interface

0 Executive*

* Integrated Test Function

• Mission Training

*= Function has external communications interface

4-1

41041. ..

4.1.2 Assign Quality Factors and Goals (Step 2)

In step 2, quality factors are assigned to each function supported by software (identified

in step 1), and initial quality goals are established for each factor. Five areas are

explored in accomplishing step 2: command and control quality concerns, system quality

factors, quality requirements survey, complementary quality factors, and quality goals

assignment.

4.1.2.1 Command and Control Quality Concerns

There are 13 quality factors, as defined in Section 3.0. Each function identified in the

previous step can be assigned any one or more of these factors. Decisions should be

made as to which qualities are needed for each function. System descriptions are likely

to have vague software quality requirements. These procedures are written as though

the system description has not addressed specific software quality requirements or has

" not addressed them comprehensively. Therefore, in examining the system description,

judgment should be exercised in assigning the most appropriate factors to each function.

The following information can be helpful.

. Table 4.1.2.-I lists typical command and control functions and software quality factors

likely to be important for each function. These quality factors may or may not be

important for a specific system and a specific application. Other quality factors may be

- important because of performance requirements or design constraints. For example,

i- space, weight, or power constraints on the computing system may place emphasis on

. more efficient software. Other quality factors may be important because of basic

" characteristics of the application and or software environment. Table 4.1.2.-2 lists some

application and environment characteristics and corresponding software quality factors

likely to be important.

4.1.2.2 System Quality Factors

Some system descriptions contain requirements for system-level qualities such as

availability, reliability, safety, transportability, and interchangeability. Those

*2 system-level quality requirements affecting system and software-unique functions

identified in the previous step should be identified in terms of software quality factors.

4-11
"*.-.-.

Table 4.1.2-1 Important S/W Quality Factors for Major C2 Applications

E I R S U C M v E F I P R
F N E U S 0 A E X L N 0 E
F T L R A R R P E T R U

I E I V B R N I A x E T S
C G A I I E T IF IN I R A A

S/W FI R B V L C A I D B 0 B B

QUALITY E I I A I T 8 A A I P I II

C Y I I Y E L I I I R I I

Y T L S I L L T A T T
V I S T I I Y a Y Y

T Y T T I
Y V Y L

COMMAND AND CONTROLT
FUNCTIONT Y

INTELLIGENCE
ELECTRONIC WARFARE (T) X X X x X X X
INTELLIGENCE DATA EXPLOITATION (T) X X
TARGET ACQUISITION (T) X- -- - -

SURVEILLANCE AND IDENTIFICATION
DATA COLLECTIONREDUCTION (S) X X X X X
DYNAMIC GRAPHIC DISPLAY(S) X X
TARGET RECOGNITION(S) X X
THREAT DETECTION/IDENTIFICATION(S) X X
THREAT DISPLAY (5) X x X X x
THREAT RESPONSE AIDS(S) X X X X X x X X

ATTACK ASSESSMENT AND TACTICAL WARNING
ATTACK & RESPONSE ASSESSMENT(S) X X
ATTACK WARNING (T) X X

DAMAGE ASSESSMENT
DAMAGE DATA COLLECTION/REPORTING(S) X X x X

- *SING LE-INTEG RATE D-OPERATIONS-PLAN
SIOP OPTION SELECTION/EXECUTION(S) X X X X
CONTROL AIDS(T) X X
DECISION AIDS(T) x x X X X X X X
DYNAMIC TARGETIING/RT ARET IING(S) X X
TACTICAL PLANNING (T) x X
WEAPON CONTROL/SELECTION(S) X X X X X X

STRIKE ASSESSMENT
STRIKE DATA COLLECTION/REPORTING(S) X X X X

FORCE MANAGEMENT/RECONSTITUTION
BATTLE FIELD MANAGEMENT(T) XX X
DYNAMIC FORCE MANAGEMENT (5) X X X X X X X X

NOTE (5) =STRATEGIC, (T) = TACTICAL

4-12

Table 4.1.2-2 Examples of Application/Environment Characteristics and

Related Software Quality Factors

APPLICATION/E NVI RONM ENT S W Q T O
CHARACTERISTICS SOFTWARE QUALITY FACTORS

Reliability
Correctness
Verifiability
Survivability

Long life cycle Maintainability
Expandability

Experimental system or high rate Flexibility
of change

Experimental technology in Portability
hardware design

Many changes over life cycle Flexibility
Reusability
Expand ability

Real time application Efficiency
Reliability
Correctness

On-board computer application Efficiency
Reliability
Correctness
Survivability

Processing of classified Integrity
information

Interrelated systems Interoperability

41

4-13
"' "

Table 4.1.2-3 System/Software Quality Factor Correlation

ACQUISITION PERFORMANCE DESIGN ADAPTATION

CONCERN/ E I R S U C M V E F I P R

COCR/ F N E U S 0 A E X L N 0OEQUALITY F T L R A R I R P E T R U
FACTOR I E I V B R N I A X E T S

C G A I I E T F N I R A A
I RB8 V L C A I D B 0 B B
E I I A I T I A A I P I ISYSTEM N T L B T N N B B L E L L

LIYC Y I I E A I I I R I I
QUALITY Y T L S B L L T A T T

FATRY I S I I I Y B Y Y
T L T T I
Y I V Y L

T I
Y T

____ ____ ____- - - - - - Y

AVAILABILITY X)(X

EFFICIENCY X X

INTEGRITY X

RELIABILITY X K X

SAFETY X X x K

SURVIVABILITY X x x

TRANSPORTABILITY X x X x

USABILITY - x

CORRECTNESS x x

MAINTAINABILITY x x

VERIFIABILITY x x xX

EXPANDABILITY K K X b

FLEXIBILITY X-~ - - -

INTERCHANGEABILITY x x x

0 ~INTEROPERABILITY x -

REUSABILITY X- - X - - s

X = POSITIVE RELATIONSHIP
= APPLICATION DEPENDENT

4-14

Table 4.1.2.-3 shows the correlation between 16 system quality factors and the 13

software quality factors. System quality factors are described in RADC-TR-83-175,

volume I, Software Quality Measurement for Distributed Systems-Final Report. The

following paragraphs discuss software quality factors likely to be important if a high

quality rating has been specified for one of the system quality factors. (An example of

critical function is one that would be selected for degraded mode operation.)

System availability is the portion of total operational time that the system performs or

supports critical functions. High system availability implies high software reliability,

survivability, and maintainability. High quality ratings for these factors ensure that the

system will seldom fail, critical functions will continue to be performed in the event of a

failure, and the fault will be quickly corrected.

System efficiency is the relative extent to which resources are utilized. High system

efficiency implies both high software efficiency and high software usability. Software

usability directly affects operator effectiveness and efficiency, and the system operator

is a factor in measuring system efficiency.

System integrity is the extent to which the system will perform without failure due to

unauthorized access to the system or system information. High system integrity implies

high software integrity. In most applications, system integrity depends on the software

and continued software functioning. In these applications software survivability would

also impact system integrity.

System reliability is the extent to which the system will perform without any failure.

High system reliability implies high software reliability, correctness, and integrity. Both

software reliability and correctness contribute to the ability of the system to perform

intended functions. High software integrity ensures that system reliability will not be

adversely affected by accidental or deliberate unauthorized access to the software or

data.

System safety is the extent to which the system will perform without causing damage or

physical injury. High system safety implies high software correctness, reliability,
,'.,. % ' =

integrity, and verifiability. High ratings for these factors ensure that the system will

perform as specified, will seldom fail, and is secure from unauthorized access.

4-15

.".."."..."........".. ".. ... "....-...

System survivability is the extent to which the system will perform and support critical

functions without failure when a portion of the system is inoperable. High system

survivability implies component and communication path redundancy and complex

anomaly management. Complex anomaly management places emphasis on high software -.

survivability. Emphasis is also placed on high software interoperability for redundancy

and increased communications and, for networks with a variety of users, on high

software integrity because of increased vulnerability to unauthorized access.

System transportability is the ease of effort for physically reloacting the system. High

system transportability implies low power, light weight, and compactness. These result

in constraints on the computing system such as limited storage, emphasis on firmware

rather than software, limited facilities for data entry and display, and wireless

communication. These constraints place emphasis on software efficiency, integrity, and

usability. Maintenance costs for the software of a transportable system are naturally

high. This in turn places emphasis on software reliability to reduce probability of

failure.

System usability is the relative effort for training or system operation. High system

usability implies high software usability. In applications for which accuracy and

.-,,, precision affect the amount of time and effort to operate the system, the quality 4'

criteria accuracy would also be emphasized. (Accuracy is an attribute of the quality

factor reliability.)

System correctness is the extent to which the system conforms to its specifications and

standards. High system correctness implies both high software correctness and high

software verifiability. The ability to verify software operation and performance against

specifications and mission objectives aids in ensuring overall system correctness.

System maintainability is the ease of effort for locating and fixing a system failure.

High system maintainability is enhanced by software that is easily maintainable and by

software that aids in fault detection and isolation. This places emphasis on high

software maintainability and on survivability to continue fault detection and isolation

even when a portion of the system is inoperable.

4-16

%. .

:.. -. .- ...-.' - .% , . . ,. ."- - ,•.',.., ' .' ... '. '..' .f , ".'. '. . -.. .. . *... - .. ', . . _, ._

System verifiability is the relative effort to verify the specified system operation and

performance. High system verifiability implies component modularity, function

modularity, fault isolation, high visibility of system operation through instrumentation

and system displays, and diagnostic aids such as self-test capabilities. This places

emphasis on high software verifiability and maintainability. Also, high software surviv-

ability would enable functions such as instrumentation, displays, and self-test to continue
when a portion of the system is inoperable.

System expandability is the relative effort to increase system capability or performance

by enhancing current functions or adding new functions. High system expandability
implies component and function generality and modularity and implies spare system J
capacity. This emphasizes high software expandability, hVh software flexibility to

incorporate enhancements a.d new functions, and high software verifiability to test

changes. For a capacity-limited system, high software efficiency would be emphasized.

System flexibility is the ease of effort for changing system missions, functions, or data

to satisfy other requirements. High system flexibility implies modular system

components and generality of component functions. This requires flexible software that

is modular and general and emphasizes change verification. In addition to high flexibility

and verifiability, high integrity would also be emphasized when modifying functions, :e

.' missions, or data could possibly compromise security. :,.-

System interchangeability is the relative effort to transform a system component for use

in another environment. High system interchangeability implies that a family of systems

(or subsystems) has components that are similar in function and that may be substituted
for each other. This implies that there may be a need to reuse software from system to

system (high reusability); to transfer software to another system configuration (high

portability); or to modify software missions, functions, or data (high flexibility).

System interoperability is the relative effort to couple the system to another system.

High system interoperability implies commonality of interface protocols, routines, and

data representations. It also implies compatibility of interface equipment. This places

emphasis on the nigh software interoperability and the ability to reuse software on

interfacing systems (high reusability). For some applications it may be necessary to

transfer software to an interfacing system (high portability).

% 4-17 , ii

L..-"."

rI..

Table 4.1.2-4 Software Quality Requirements Survey

INSTRUCTIONS:

The 13 software quality factors listed below represent aspects of software quality
which are recognized as being important for certain software products. Use the
attached Software Quality Factor Identification Form; list the system functions
which are supported by software and the software-unique functions; and, for
each function, indicate whether you consider each factor to be very important
(goal of "E" for excellent quality), important (goal of "G" for good quality),
somewhat important (goal of "A" for average quality), or either not important
(blank) or not applicable (blank or "N/A").

ACQUISITION CONCERN QUALITY FACTOR DEFINITION

EFFICIENCY RELATIVE EXTENT TO WHICH A RESOURCE IS UTILIZED (I E..
STORAGE SPACE PROCESSING TIME. COMMUNICATION TIME)

INTEGRITY EXTENT TO WHICH THE SOFTWARE WILL PERFORM WITHOUT
FAILURES DUE TO UNAUTHORIZED ACCESS TO THE CODE OR
DATA WITHIN A SPECIFIED TIME PERIOD

RELIABILITY EXTENT TO WHICH THE SOFTWARE WILL PERFORM WITHOUT

PERFORMANCE ANY FAILURES WITHIN A SPECIFIED TIME PERIOD

SURVIVABILITY EXTENT TO WHICH THE SOFTWARE WILL PERFORM AND
SUPPORT CRITICAL FUNCTIONS WITHOUT FAILURES WITHIN A k.
SPECIFIED TIME PERIOD WHEN A PORTION OF THE SYSTEM IS
INOPERABLE

USABILITY RELATIVE EFFORT FOR TRAINING OR SOFTWARE OPERATION
(e.g.. FAMILIARIZATION. INPUT PREPARATION. EXECUTION. - 7
OUTPUT INTERPRETATION)

CORRECTNESS EXTENT TO WHICH THE SOFTWARE CONFORMS TO ITS
SPECIFICATIONS AND STANDARDS

DESIGN MAINTAINABILITY EASE OF EFFORT FOR LOCATING AND FIXING A SOFTWARE
FAILURE WITHIN A SPECIFIED TIME PERIOD

VERIFIABILITY RELATIVE EFFORT TO VERIFY THE SPECIFIED SOFTWARE
OPERATION AND PERFORMANCE

EXPANDABILITY RELATIVE EFFORT TO INCREASE THE SOFTWARE CAPABILITY OR
PERFORMANCE BY ENHANCING CURRENT FUNCTIONS OR BY
ADDING NEW FUNCTIONS OR DATA

FLEXIBILITY EASE OF EFFORT FOR CHANGING THE SOFTWARE MISSIONS.
FUNCTIONS. OR DATA TO SATISFY OTHER REOUIREMENTS

ADAPTATION NTEROPERABILITY RELATIVE EFFORT TO COUPLE THE SOFTWARE OF ONE SYSTEM

TO TF E SOFTWARE OF ANOTHER SYSTEM

PORTABILITY RELATIVE EFFORT TO TRANSPORT THE SOFTWARE FOR USE IN
ANOTHER ENVIRCNMENT (HARDWARE CONFIGURATION
AND/OR SOFTWARE SYSTEM ENVIRONMENT)

REUSABILITY RELATIVE EFFORT TO CONVERT A SOFTWARE COMPONENT FOR
USE IN ANOTHER APPLICATION

4-18

System reusability is the relative effort to convert a system component for use in

another application. High system reusability implies modularity of components and

modularity and specificity of functions. This eases the tasks of selection and removal

for reuse. It also implies that functions and components are general enough to be

tailored to a new application. This places emphasis on high software reusability, high

software flexibility to accommodate changes, and high software verifiability to test

changes.

4.1.2.3 Quality Requirements Survey
I%%

System descriptions are often vague with respect to software quality requirements.

Surveys can aid in defining specific software quality requirements. Tables 4.1.2-4 and

4.1.2-5 are example survey forms. Table 4.1.2-4 gives instructions for completing the

,'4 survey and lists and defines the 13 software quality factors. Table 4.1.2-5 enables the

respondent to identify each system or software-unique function supported by the

software and to enter a quality factor level of importance-one for each of the 13 factors

for each of the identified functions.

We recommend that the survey response be accompanied by a letter justifying each

quality factor entry by referencing a system description paragraph or other requirements

documentation (e.g., MIL-STD-1521 or DOD-STD-SDS) or by explaining the entry.

Organizations responsible for software quality requirements and those potentially

affected by low quality products should be surveyed. At a minimum, the Air Force using

command and AFLC should be surveyed.

Entries in Table 4.1.2-5 represent survey results for the example system (see Tbl.

4.1.1 -1). Survey respondents were familiar with the system description.

4.1.2.4 Complementary Quality Factors

* This section discusses the effects of low quality levels among factors. Section 4.1.3

discusses the effects of high quality among factors.

4-19

X....-,

... ,-..-..............-... :>- .%

a Table 4.1.2-5 Software Quality Factor Identification Form - Survey Results

PERFORMANCE DESIGN NOTDAPTATIONTRES

E ftR S U C M V E F I P ft NTFROAETJS

F N E U 5 o A E X L N
0

E E .EXCELLENT
F T L Rt A R I ft P E R Ut u a-GOOD

SOTWR ' I V B R N I A X E T S A .AVERAGE
QUATAR C G A I I E T F N I R A A NANK otNIA-
QUALI'TY I R B V L c A
FACTOR E I IT I A A I I NOT IMPORTANT OR NOT L

NI L 8 N N B B L E L. L APPICA*I.E
C Y I I Y E A I I I R I I

SYSTEM OR SOFTWARE- Y 7 5 B L L T A T T
UNQUE Y I s I I I Y B Y y

FUNCTION T I T Tr
'A0 Y Y L

TI
Y T

SURVEILLANCE AND IDENTIFICATION E E E E E E G G G G

THREAT EVALUATION G A E E E E G G

WEAPONS ASSIGNMENT /CONTROL G E E E E E G G G G

BAT FLESTAFF MANAGEMENT A A A f E G G G

COMMUNICATIONS E E E 9 E E G

MAN-MACHINE INTERFACE E E 6 E G G G

INTEGRATED TEST FUNCTION E E G

MIS!,ION TRAINING E E G E G

4-20 ~a~

IL-

Four quality factors are complementary to most other factors and should be considered

when choosing important factors. These are reliability, correctness, maintainability, and

verifiability, as shown in Table 4.1.2-6. Low quality levels for these factors can

adversely effect measured (i.e., by factor rating iormula) quality levels for other

factors. Complementary means to till out or to complete. For example, if a high quality

level is specified for reliability, the specification is incomplete until a high quality level

has also been specified for correctness and verifiability. The reasoning is that even if

the metric scores were high for reliability, but the software was incorrect or difficult to

verify, the actual reliability could be low (i.e., a high number of errors per lines of code)

because of errors due to incorrect software or uncertainty in software verification.

Another example is that if a high quality level is specified for reusability, then high

quality levels should also be specified for reliability, correctness, maintainability, and

verifiability. The reasoning is that if metric scores were high for reusability, but the

software was not highly reliable, incorrect, and/or difficult to maintain and verify,

actual effort to reuse the software could be much higher than predicted by the

.- reusability metric scores alone because of errors due to unreliable and incorrect

software, difficulty in locating and fixing errors, and/or uncertainty in software

verification.

Using factors (e.g., reliability) to view aspects of software quality enables a singular

perspective on a particular quality concern; however this singular perspective is not

always an independent perspective on quality, as is the case for complementary quality

factors. Any project, regardless of the type of system or application, should include

complementary factors in the quality requirements. Failure to do so could lead to a

situation in which metric scores are not true indicators of the total quality present.

Complementary factors should also be considered when attempting to validate metrics.

Failure to do so could result in misinterpreting correlation results between metric scores

and rating formula values.

4.1.2.5 Quality Goals Assignment

An initial set of quality goals should be assigned at this time. These goals should be -%%

based on considerations mentioned in previous sections:

4-21
06

% %

-W':-W0 -- q -.

Table 4.1.2-6 Complementary Software Quality Factors

E I R S U C M V E F I P R
F N E U S 0 A E X L N 0 E

COMPLEMENTARY F T L R A R I R P E T R U
QAIYI E I V B R N I A X E T S

QUALTYR C G A I I E T F N I R A A
FACTOR I RB8 V L C A I D B 0 B B

E I I A I T I A A I P I I
N T L B T N N B B L E LiL

QUALITY C Y I I Y E A I I IR II
FACTO Y T S L TA TT

\ACORY S I I IYB8 Y y
SPECIFIED T L T T I

TI

EFFICIENCY
Y

INTEGRITY

RELIABILITY*

SURVIVABILITY* * -

USABILITY** **

CORRECTNESSI

MAINTAINABILITY *L1-

VERIFIABILITY** *

EXPANDABILITY** *

FLEXIBILITY** * *

INTEROPERABILITY * * *

PORTABILITY**-*
*

REUSABILITY** * *

*=DEPENDENCY

4-22

Four quality factors are complementary to most other factors and should be considered

when choosing important factors. These are reliability, correctness, maintainability, and

verifiability, as shown in Table 4.1.2-6. Low quality levels for these factors can

adversely effect measured (i.e., by factor rating formula) quality levels for other

factors. Complementary means to fill out or to complete. For example, if a high quality

level is specified for reliability, the specification is incomplete until a high quality level

has also been specified for correctness and verifiability. The reasoning is that even if

the metric scores were high for reliability, but the software was incorrect or difficult to

verify, the actual reliability could be low (i.e., a high number of errors per lines of code)

because of errors due to incorrect software or uncertainty in software verification. .-

Another example is that if a high quality level is specified for reusability, then high

quality levels should also be specified for reliability, correctness, maintainability, and

verifiability. The reasoning is that if metric scores were high for reusability, but the

software was not highly reliable, incorrect, and/or difficult to maintain and verify,

actual effort to reuse the software could be much higher than predicted by the

reusability metric scores alone because of errors due to unreliable and incorrect

software, difficulty in locating and fixing errors, and/or uncertainty in software

verification.

Using factors (e.g., reliability) to view aspects of software quality enables a singular

perspective on a particular quality concern; however this singular perspective is not '

always an independent perspective on quality, as is the case for complementary quality

factors. Any project, regardless of the type of system or application, should include

complementary factors in the quality requirements. Failure to do so could lead to a

* situation in which metric scores are not true indicators of the total quality present.

Complementary factors should also be considered when attempting to validate metrics.

Failure to do so could result in misinterpreting correlation results between metric scores

and rating formula values.

4.1.2.5 Quality Goals Assignment

.An initial set of quality goals should be assigned at this time. These goals should be

based on considerations mentioned in previous sections:

4-21

.. : .. :-

i i !i' . i -4i

Table~~~~~~~ ~ ~ ~ ~ 4..- opeetr ofwr ult atr

E I S U C M E F I P

F N U S0 A X LN 0

FACTO CU GM V F I P R

FACTOR I R B V L C A I D B 0 B B
E I I A I T I A A I P I INT L B T N N B B L E L L

QUALTY V T I S B L L T A TT
FACTOR y I S I I I Y B Y V

SEIIDT L T T ISEIIDY I Y Y L
TI
Y T

Y

EFFICIENCY .

ir*
INTEGRITY

RELIABILITY

SURVIVABILITY

USABILITY**

CORRECTNESSI

MAINTAINABILITY**

VERIFIABILITY** *I

EXPANDABILITY ****_

FLEXIBILITY** * *I

INTEROPERABILITY * **

PORTABILITY**-**

*=DEPENDENCY

4-2

a. Command and control quality concerns.

b. System quality factors.

c. Quality requirements survey.
d. Complementary quality factors.

*.. Cost considerations and positive and negative factor interrelationships, which affect

feasibility of the goals, will be considered in subsequent steps.

Table 4.1.2-7 represents the initial quality goals for the example airborne radar system.

These goals are based on considerations a through d and include the complementary

quality factors. The goal indicators used are E = excellent, G = good, A average, and

blank or N/A = not important or not applicable.

Numeric ranges for goal indicators will be discussed later. At this point in the
specification process, an E goal would indicate a great deal of emphasis required for the

quality factor, an expected high quality score, and correction of lower scoring areas of

the software. A G goal would indicate emphasis on most aspects of the quality factor

attributes with correction of only selected low scoring software areas. An A goal would

indicate a desired awareness of the aspects of the quality factor and incorporation of
quality considerations where convenient in the development methodology but with little

or no cost impact. A blank or an N/A would indicate that this quality factor is either not

important or not applicable.

The entries marked with an "a" in Table 4.1.2-7 are either new goal entries or entries

changed to a higher goal as a result of considering complementary quality factors. (See
Tbl. 4.1.2-5 for survey results.) An example is that the goals for verifiability were

* raised to E and new entries were made for several functions at the E level because of the

E goals for reliability and usability.

,.1.3 Consider Interrelationships (Step 3)

In step 3, interrelationships among the factors assigned to a single system-level function

'- are explored with respect to the technical feasibility of achieving the quality levels

assigned as the initial set of quality goals. The initial set of quality goals was

established in step 2. Step 3 and step 4 explore the feasibility of achieving those goals.

•.4-2

., '.-4-23

"p ,.,. " ; " ".-".. '.'' - "" .,... - . " " ". ' " -- ,-.-.,. '" -"-"- ." - ." .-.- ,-.-.-.-.-j '' , - , "-"-"." .

Table 4.1.2-7 Software Quality Factor Identification Form - Initial Goals

5PERFORMANCE DESIGN ADAPTATION

E I R S U C M V E F* I NOTE FOR GOAL ENT Rif
F N E U S 0 A E X L. N L. E BE XCELLENT
F T L. R A R I R P E T R U G -GOOD

SOFTWARE I E I V B R N I A X E T S A -AVERAGE
QUALITY C G A I I E T F N I R A A BAKO i

FATRI R B V L C A I D 1B 0 B BFA CTO0R E I I A I T I A A I P I I NOY IMPORTANT Oft NOT

N T L B T N N B B L E L L APPLICABLE
C I I Y E A I I I R I I .CHANGED

SYSTEM OR SOFTWARE C r L S B L L T A T T
UNIQUE I S I I I V 8 Y Y

FUNCTION T L T T I
V I V V L

T I
Y T

~~VN/AN/ T A W

SUVILNEAND IDENTIFIATION E E : : : E* G

WEAPONS ASSIGNMENT /CONTROL G E E E E E E* G G G

BATTLESTAFF MANAGEMENT A A C' I, E E. E G

COMMUNICATIONS E E E E E E E' G

MAN-MACHINE INTERFACE E E E E E- E G G

EXECUTIVE E E E E G E' G

INTEGRATED TEST FUNCTION +E E E' E' E

MISSION TRAINING E. E E E* E E G

4-24

___ _'A__ zzL . I_

D-i3989 SPECIFICATION OF SOFTWdRREQURLITY ATTRIBUTES VOLUME 2 2/2
SOFTWARE QUALITY SP. (U) BOOING AEROSPACE CO SEATTLE WA
T P BOWIEN ETlAL. FEB 85 Di82 ii678-2

UNLSIID RD-R8-7VL- 3628--i7 FG92 N

mhohmhmhhmhEEE

Eson mhmhh

'.

U4--

-I1II11
.IA 111'- BM" W ; i

NATIO*NAL BU mA FSADRSI6-) :-,.

40 . 120M11111 -1'l2 .2

i0

-. 48

11111125 111 i.* "".6

• ,i....i. lii.'. . , ,"-"

MICROCOPY RESOLUTION TEST CHART 4 I
NATIONAL BUREAU OF STANOAROS-1963-A 4

% 'I

%
-

* -a- -. * -*.-~.- . -t-~ Z -

Assigning more than one quality factor to a function (and therefore to software

*" supporting that function) can, in some cases, have either a beneficial or an adverse

effect, depending on the combination of factors that have been assigned. Some factors

* share common criteria; some have criteria that conflict with another factor; and some

have criteria that benefit another factor. Four areas are explored in accomplishing step

* 3: shared criteria,, beneficial and adverse relationships, quantification of relationships,

and review of quality goals.

4.1.3.1 Shared Criteria

Shared criteria are those that are an attribute of more than one quality factor and can

be identified using Table 3.2-1. For example, modularity is a criterion for eight of the

13 factors; generality is a criterion shared by three factors. In the example system,

surveillance and identification has been assigned five quality factors sharing the

criterion modularity (maintainability, verifiability, expandability, flexibility, and

interoperability). The beneficial effect here is that modularity is built into the software

only once, not five times; and metric data collection for modularity is performed only

once. Therefore, costs associated with assigning factors that share common criteria are

generally less than costs associated with assigning factors that do not share criteria.

(Costs are considered in more detail in the next step.)

4.1.3.2 Beneficial and Adverse Relationships

Attribute criteria affecting another factor are identified in Table 4.1.3-1. Criteria that

are basic attributes of a factor are identified with an x; criteria that are in a positive or

cooperative relationship with a factor are identified with a triangle, and criteria that are

in a negative or conflicting relationship with a factor are identified with an inverted

triangle.

For example, operability is a criterion of usability and is shown as having a cooperative

relationship with both maintainability and verifiability. The assertion is that the

operability of usable software aids in software verification and maintenance, even

though it is not an essential characteristic of verifiability and maintainability. The

implication is that the desired rating for maintainability and verifiability (in terms of ..* ,..

effort to fix or verify) will be easier to achieve if usability is also a specified quality

factor.

4-25

Jk%** P .*..% ~ .. * - .. .

Table 4.1.3-1 Effects of Criteria on Software Quality Factors

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTAIONI

FATPARNM E S U C M V I F P aA ACORACRONYM F N E U S 0 A E
C F T L A A ftI a T ft U

-. C G A II E T F N R A A19 V I C A I D 0 a
R.I I A I T I A A t P I I

N C Y a B L E L L
* V T I S I L T T

N I S I I I Y I Y Y

C I Y V I.
C T

N Y

CRITERION/ACRONYM I R U C NI V E F I P Rt

ACCURACY AC ~"7 x
E AUTONOMY AU Kt

F DISTRtBUTEDNESS oG '1
0 EFFECTIVENESS - COMMUNICATION CC K 7 7
RI EFFECTIVENESS .;PROCESSING EP K '17' 77 T
N
C OPERABILITY OP K1 x
E AECONFIGURAILITY RE '17 K 17 ;7 77 '17

SYSTEM ACCESSIBILITY SS 7 K
TRAINING TN K

0 COMPLETENESS - - - -

II CONSISTENCY CS x

I.'G TRACEABILITY TC K X
N VISIBILITY VS - K

APPLICATION INDEPENDENCE AP

A AUGMENTABIUTY AT x
0 COMMONALITY CIL K

A DOCUMENT ACCESSIBILITY DO " 7 K
T FUNCTIONAL OVERLAP FO K
A FUNCTIONAL SCOPE F

I GENERA~UTY GE ' N " 7 ~'; K0 INDEPENDENCE 0 ~
N u II

SYSTEM CLARITY ST

SYSTEM COMPATIBILITY SY

VIRTUALITY VR KZ7K.G MODULARITY MO K7 K It K K. K Kx
E
N SELF.DISCRIPtIVE NESS so 77 K K K II KIII
A SIMPLICITY SI K K KI K KIII.

NOTES. x - BASIC RELATIONSHOIP

InI . OSITIVE EFFECT
"7 NEGATIVE EFFECT
BLANK *NONE OR APPLICATION DEPENDENT

4-26

PIPPIN'

Anomaly management is an example of a criterion with a conflicting relationship.
Anomaly management is a criterion of reliability and is shown as having a negative

relationship with efficiency. The assertion is that the additional code required to

perform anomaly management increases runtime and requires additional storage, thus

decreasing potential efficiency. The implication is that the desired rating for efficiency

(in terms of utilization of resources) will be more difficult (or more costly) to achieve if

reliability is also a specified quality factor. Possible solutions to this type of conflict

include:

a. Spending the budget and schedule to try to achieve goals as high as possible for

both factors.

b. Lowering goals for one or the other factor.

c. Allocating higher goals to the computing hardware (e.g., more efficient processor,

more reliable processor) and possibly decreasing emphasis on high software quality

goals (e.g., a more efficient processor to decrease emphasis on high software

efficiency in achieving overall system efficiency and enabling a lower software

quality goal for efficiency).

Another possibility is to decrease emphasis (goals) for the specific criterion that

conflicts with another quality factor and increase emphasis on those that do not. This

possibility will be explored in Section 4.2 in the discussion on criteria weighting.

4.1.3.3 Quantification Of Relationships

Table 4.1.3-2 details the rationale for each cooperative relationship identified in Table

4.1.3-1; shared criteria are identified as common for more than one factor. The degree

of effect is noted as I = low, 2 = medium, and 3 = high. This will enable a quantification

of the degree of effect caused by factor interrelationships. Table 4.1.3-3 details the

rationale for negative factor interrelationships.V
Table 2.2-2 summarizes, at the factor level, the positive and negative relationships in

Table 4.1.3-1. Table 4.1.3-4 is in the same format as Table 2.2-2 and is an example

' quantification of interrelationships for factors assigned to the surveillance and

* : identification function of the example system. For each factor assigned to this function, ,

Tables 4.1.3-2 and 4.1.3-3 were consulted to identify the factors affected and the reason

4-27 -U

___. 4,. -2

DEC Table 4.1.3-2 Positive Factor Interrelationships

NOTE: I1-LOW I
2 - MEDIUM
3 - HIGH
N/A - NOT APPLICACLE
AD - APPLICATION DEPENDENT

FACTORSPECIFIED FACTOR(S) AFFECTED DEGREE REASONAFFECTED,.%

EFFICIENCY NONE N/A N/A

INTEGRITY AD AD AD (NOTE HIGH INTEGRITY CAN REDUCE THE
NUMBER OF ERRORS INCREASING THE
RELIABILITY RATING

RELIABILITY SURVIVABILITY 1 OTHE CRITERION ANOMALY MANAGEMENT IS
_COMMON

MAINTAINABILITY 1)THE CRITERION SIMPLICITY IS COMMON
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
RE USABILITY &

.4 USABILITY 1 @GOOD ANOMALY MANAGEMENT CAN
REDUCE OPERATOR WORKLOAD

SURVIVABILITY RELIABILITY (SEE 0. ABOVE)

MAINTAINABILITY 1 OTHE CRITERION MODULARITY IS COMMON.
VERIFIABILITYEXPANDABILITY

FLEXIBILITY
INTE ROPERABILITY
PORTABILITY
REUSABILITY

USABILITY I (SEE (). ABOVE)

MAINTAINABILITY 1 THE RECONFIGURABILITY OF SURVIVABLE K.-
'q ,.% SOFTWARE CAN AID IN LOCATING PROBLEMS '

USABILITY MAINTAINABILITY I THE COMMUNICATIVENESS OF USABLE
VERIFIABILITY SOFTWARE AIDS IN VERIFICATION ANDMAINTENANCE OF THE SOFTWARE

CORRECTNESS MAINTAINABILITY 1 @THE CRITERION CONSISTENCY IS COMMON

MAINTAINABILITY 1 THE COMPLETENESS OF CORRECT SOFTWARE V
REUSABILITY AIDS IN MAINTAINING AND REUSING THE

_______ SOFTWARE
VERIFIABILITY (DTHE CONSISTENCY OF CORRECT SOFTWARE

EXIABILITY AIDS iN VERIFYING THE SOFTWARE AND IN
REUSABILITY MODIFYING THE SOFTWARE FOR NEW USE.

MAINTAINABILITY 1 THE TRACEABILITY OF CORRECT SOFTWARE
VERIFIABILITY AIDS IN VERIFICATION AND MAINTENANCE OF
EXPANDABILITY THE SOFTWARE AND IN MODIFYING THE
FLEXIBILITY SOFTWARE FOR NEW USE.
REUSABILITY

4-28

Table 4.1.3-2 Positive Factor In terrelationships (continued)

NOTE: I -LOW
2 -MEDIUM
3-. HIGH
N/A - NOT APPLICABLE
AD - APPLICATION DEPENDENT

DEGREE
FACTORSPECIFIED FACTOR(S)AFFECTED AFETDREASON

AFFECTE

MAINTAINABILITY CORRECTNESS I (SEE 0. ABOVE)

VERIFIABIILTY I (@THE CRITERION VISIBILITY IS COMMON

SURVIVABILITY I(SEE 0. ABOVE)
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY
IN TEROPE RABILITY
PORTABILITY
RE USABILITY

VERIFIABILITY @ THE CRITERION SELF-DESCRIPTIVE NESS IS
EXPANDABILITY COMMON.
FLEXIBILITY
PORTABILITY
RE USABILITY

RELIABILITY (SEE (D. ABOVE)
VERIFIABILITY
EXPANDABILITY
FLEXIBILITY

Pr USABILITY___________________________

VERIFIABILITY 1 (SEE Os.ABOVE)
EXPANDABILITY
FLEXIBILITY
RE USABILITY

*VERIFIABILITY MAINTAINABILITY I (SEE &. ABOVE)

-4 SURVIVABILITY 1(SEE 0. ABOVE)
MAINTAINABILITY
EXPANDABILITY
FLEXIBILITY
IN TE ROPE RAB ILl TV
PORTABILITY
REUSABILITY _________________________

MAINTAINABILITY 1 (SEE 40. ABOVE)
EXPANDABILITY

* FLEXIBILITY
* PORTABILITY

RE USABILITY________________________

RELIABILITY I(SEE 0. ABOVE)
MAINTAINABILITY
EXPANDABILITY
FLEXIBILITY
REUSABILITY

4-29

~1 6
i ii ii I

Table 4.1.3-2 Positive Factor Interrelationships (continued)

NOTE: I -LOW
2 = MEDIUM
3 -HIGH
N/A =NOT APPLICABLE
AD =APPLICATION DEPENDENT

DEGREEFACTOR SPECIFIED FACTOR(S) AFFECTED AFFECTED REASON

EXPANDABILITY FLEXIBILITY I (DTHE CRITERION GENERALITY IS COMMON
REUSABLITY _______________________________

- SURVIVABILITY 1(SEE &. ABOVE)
MAINTAINABILITY

* VERIFIABILITY
FLEXIBILITY
INTEROPERABILITY
PORTABILITY
RE USABILITY________________________

MAINTAINABILITY (SEE (0. ABOVE)
VERIFABILITY

FLEXIBILITY
PORTABILITY
RE US ABILITY

RELIABILITY I (SEE 0. ABOVE)
MAINTAINABILITY
VERIFIABILITY
FLEXIBILITY
RE USABILITY _________________________

INTEROPERABILITY 1THE GENERALITY OF EXPANDABLE SOFTWARE
AIDS IN INTERFACING WITH SOFTWARE OF
OTHER SYSTEMS

FLEXIBILITY EXPANDABILITY 1(SEE (V ABOVE)
-REUS ABILITY

SURVIVABILITY 1 (SEE (3. ABOVE) 's
MAINTAINABILITY
VERIFIABILITY X
EXPANDABILITY
INTE ROPE RABILITY
PORTABILITY
RE USABILITY

MAINTAINABILITY 1 (SEE ID. ABOVE)
VERIFABILITY
EXPANDABILITY
PORTABILITY
REUSABILITY

RELIABILITY 1 (SEE T. ABOVE)

VERIFIABILITY

RE USABILITY _____ _______________________

INTERPERABLITY 1rI*E GENERALITY OF FLEXIBLE SOFTWARE AIDS
IN INTERFACING WITH SOFTWARE OF OTHER

__SYSTEMS

4-30

% , _ K

Table 4.1.3-2 Positive Factor Interrelationships (continued)

2 -MEDIUM
3 a HIGH
N/A - NOT APPLICABLE
AD - APPLICATION DEPENDENT

FACTR SPCIFID FT FFTDEGREE
FATRPCFE ACOR(S) AFECED AFFECTED REASON

INTE ROPE RABILITY PORTABILITY 1@THE CRITERION INDEPENDENCE 1S COMMON
REUSABLITY________________________

SURVIVABILITY I (SEE (D. ABOVE)
MAINTAINABILITY
VERIFIABILITY
FLEXIBILITY
PORTABILITY
REUSABILITY

PO RTABILITY INTE ROPE RABILITY 1 (SEE W.ABOVE)
REUSABLITY________________________

SURVIVABILITY I (SEE (D.ABOVE) I
MAINTAINABILITY
VERIFIABILITY
EX PAN DAB IL ITY
INTEROPERABILITY

.4. ~~REUSABILITY______
MAINTAINABILITY 1 (SEE @. ABOVE)
VERIFABILITY
EXPANDABILITY
FLEXIBILITY

4,;. IRE USABILITY

REUSABILITY EXPANDABILITY 1(SEE 02. ABOVE)
ri EXIBILITY______ _____________________ _____

fNTE ROPE RABILITY 1 (SEE 0. ABOVE)
PORPT ABILITY______________________________

SURVIVABILITY I (SEE 0. ABOVE)
MAINTAINABILITY
VERIFIABILITY

4'. EXPANDABILITY

4. FLEXIBILITY i
MAINTAINABILITY 1 (SEE 0., ABOVE)

EXPANDABILITY
FLEXIBILITY
PORTABILITY

RELIABILITY 1 (SEE Q, ABOVE)
MAINTAINABILITY
VERIFIABILITY 16
EXPANDABILITY
FLEXIBILITY

PORTABILITY 1 THE DATA AND ARCHITECTURAL INDEPENDENCE
OF REUSABLE SOFTWARE ENHANCES SOFTWARE
PORTABILITY

MAINTAINABILITY 1 WELL- STRUCTURED DOCUMENTATION WHICH IS
EASY TO ACCESS IS AN AID IN MAINTAINING THE
SOFTWARE

iNTE ROPE RABILI TY I THE GENERALITY OF REUSABLE SOFTWARE AIDS
IN INTERFACING WITH SOFTWARE OF OTHER
SYSTEMS.

4-31 ,.

.~.. ~-

.~ 4* 4 *%

1."''' ~ - -~%

- ... -.--..---

Table 4.1.3-3 Negative Factor Interrelationships

NOTE: I=LOW2 - MEDIUM "
3 = HIGH J

N/A , NOT APPLICABLE

DEGREE

FACTOR SPECIFIED FACTOR(S) AFFECTED AFFECTED REASON

MAINTAINABILITY 2-. -EFFICIENCY CODE WHICH IS OPTIMIZED FOR EFFICIENCY IS
VFRICIENCY _MORE DIFFICULT TO TEST AND TO MAINTAIN

VERIFIABILITY ?.

PORTABILITY 2 CODE WHICH IS OPTIMIZED FOR EFFIENCY
USUALLY DECREASES PORTABILITY .%

EFFICENCY 2 THE ADDITIONAL RUN TIME AND STORAGE

INTEGRITY REQUIRED TO CONTROL ACCESS TO CODE
ANDiOR DATA DECREASES EFFICIENCY

RELIABILITY EFFICIENCY 3 THE ADDITIONAL CODE REQUIRED TO PROVIDE
ACCURACY AND TO PERFORM ANOMALY
MANAGEMENT INCREASES RUN TIME AND
REQuIRES ADDITIONAL STORAGE THEUSEOF

AN HOL TO ACHIEVE SIMPLICITY CAN DECREASE
EFFICIENCY.

SURVIVABILITY EFFICIENCY 3 MODULAR. ANOMALY TOLERANT.

RECONFIGURABLE SOFTWARE INCREASES RUN
TIME AND REQUIRES ADDITIONAL STORAGE.

THE DISTRIBUTEDNESS REQUIRED FOR
2 SURVIVABLE SOFTWARE INCREASES THE RISK OF

UNAUTHORIZED ACCESS

LEXIBILITY THE RECONFIGURABILITY REQUIRED FOR SURVIVABLE
)ORTABILITY SOFTWARE REDUCES ITS POTENTIAL EXPANDABILITY.
:EUSABILITY FLEXIBILITY. PORTABILITY & REUSABILITY

USABILITY EFFICIENCY EASING AN OPERATOR'S TASK AND PROVIDING
MORE USABLE OUTPUT REQUIRE MORE RUN
TIME AND ADDITIONAL STORAGE.

CORRECTNESS NONE N/A N/A

MAINTAINABILITY EFFICIENCY 2 ®MODULAR. SELF-DESCRIPTIVE. SIMPLE CODE
RESULTS IN INCREASED OVERHE .D AND I '
DECREASED OPERATING EFFICENCYVERIFIABILITY

EXPANDABILITY EFFICIENCY .1)INCREASED GENERALITY OF THE CODE
INTEGRITY USUALLY RESULTS IN ;.ESS EFFiCiENCY.
RELIABILITY INCREASED VULNERABILITY To UNAUTHORIZED
SURVIVABILITY ACCESS. A HIGHER NUMBER OF ERRORS.

,NCREASED DIFFICULTY IN PROVIDING
ACCjRACY. AND MORE COMPLEX ANOMALY
MANAGEMENT

E-ICiENCY 1 VIRTUAL STORAGE CAN INCREASE RUN TIME

E;cICIENCY 2 (SEE , ABOVE) S

..,

4-32

4 .32 ' -- ,"• J .'-'-" .,:""". .:, . :. ": Z', -: - , -.- - -,.: -. .., ,- -,n.v. .
....""" ""''""" "'' "" '""'"'"""" """'""'""""s

Table 4.1.3-3 Negative Factor Interrelationships (continued) 1 7-

NOTE: 1-LOW
2 - MEDIUM
3 - HIGH
N/A - NOT APPLICABLE

FACTORSPECIFIED FACTOR(S) AFFECTED DEGREEREASON
, AFFECTED REASON

EFFICIENCY I
FLEXIBILITY INTEGRITY (SEE 0. ABOVE)

RELIABILITY
SURVIVABILITY __.__,o_

EFFICIENCY 1 (SEE . ABOVE)

EFFICIENCY THE USE OF STANDARD INTERFACE ROUTINES
INTEROPERABILITY AND DATA REPRESENTATIONS INCREASES -4OVERHEAD AND REDUCES OPERATINGEFFICIENCY.

EFFICIENCY)EMPHASIS ON SOFTWARE SYSTEM ANDMACHINE INDEPENDENCE DECREASES
POTENTIAL EFFICIENCY.

INTEGRITY 1 COUPLED SYSTEMS HAVE MORE AVENUES OF
ACCESS. MORE USERS, COMMON DATA
REPRESENTATIONS. AND SHARED DATA AND N
CODE; THESE INCREASE THE RISK OF
UNAUTHORIZED ACCESS ,

HGHLY MODULAR CODE CAN REOUIRE MORE
EFFICIENCY 1 OVERHEAD, DECREASING OPERATING

______ ______-_____ EFFICIENCY ,

PT L EFFICIENCY 1 (SEE 1). ABOVE)

EFFICIENCY 2 MODULAR. SELF-DESCRIPTIVE CODE RESULTS IN
INCREASED OVERHEAD AND DECREASED , .

.______________ _ OPERATING EFICIENCY ,Q.

REUSABILITY INTEGRITY 3 WELL-STRUCTURED DOCUMENTATION WHICH IS-% ..-
EASILY ACCESSIBLE INCREASES THE RISK OFUNATHORIZED ACESS

EFFICIENCY 1 (SEE 0, ABOVE)
INTEGRITY
RELIABILITYSURVIVABILITY .. ",,

EFFICIENCY 1 (SEE .ABOVE)

EFFICIENCY 2 (SEE 0. ABOVE)

4-33;.. * I *. . . . *
I " -............... ! .P

Table 4.1.3-4 Factor Interrelationship Calculations
.7

ACQUISITION CONCERN PERFORMANCE DESIGN ADAPTATION

EA E R S U C M VE F I P R
C F N E US 0 A E X L N 0 E

-. 0 QUALITY F T L R A R I R P E T R U
U FACTOR I E I V B R N I A X E T S

IC G A I I E T F N I R A A
s AFFECTED I RB8 V L C A IDB8 0 B 8

IE I I A I T I A A I P I I
N T L B T N N B B L E L L
C Y I I Y E A I I I R I I

o V T L S B L L T A T T
N QULT I S I I I V B Y Y

QAIYT L T T I
C FACTOR V I Y Y L

O SPECIFIED TI
N Y T
C V
E
N N/A N/A N/A

P EFFICIENCY 7 7
R Z- - - - -- - - -

FINTEGRITY &
-. R

* - M RELIABILITY 7
A

CSURVIVABILITY N/A- / _t _VV 7 7
E USBIITV

D CORRECTNESS A x
E ____________I__ *'k AI
S - - - __ __ __ __

MAINTAINABILITY
G\

NVERIFIABILITY V - -

EXPANDABILITY 7\7' 7

D FLEXIBILITY 7 7 7

AT INTEROPERABILITY Afl

IPORTABILITY N/A V
NREUSABILITY N/Av vv _ _

POSITIVE TOTALS /\ N/A N/A N/A N/A +1 N/A +3 +4 +3 +3 +2-

NEGATIVE TOTALS -20 -3 -2 -N/A N/A -2 -2 0 0 N/A-

T

4-34...................

.* ~ *-*.~, * ~ -'. -~''. .- * 4 - -. - .**. - * ** * -

-I

for and degree of effect. If the reason was valid for this system, the degree of effect

was entered in the appropriate triangle. To remain conservative in estimating positive

effects, only criteria relationships were considered. Effects of shared criteria were not

quantified. Each column was totaled to indicate the degree of positive and negative

interrelationship for each factor affected; the higher the score, the greater the effect on

the factor. The cooperative effect is the highest for verifiability (+4), followed by

maintainability, expandability, and flexibility (each with +3), then by interoperability (+2)

and usability (+1). Major contributors to the cooperative effect are correctness (+8),

maintainability (+3), and usability (+2).

The conflicting effect is, by far, the highest for efficiency (-20), followed by integrity

(-3) and reliability, maintainability, and verifiability (each with -2). The score for

flexibility is zero. All factors, except correctness, contribute to the conflicting effect.

The major contributors are expandability (-6), interoperability (-5), and flexibility and

efficiency (each with -4). The major conflict, as shown by the table, is needing software

that would have low adaptation costs and also efficiently utilize resources in its intended

application.

4.L3.4 Review of Quality Goals

The final action in this step is to review initial quality goals established in step 2 (see

Tbl. 4.1.2-7) in light of cooperative and conflicting relationships quantified in step 3 and

to modify them if necessary. Two levels of goals were set for factors assigned to

surveillance and identification: excellent and good. An excellent goal was set for seven

factors: efficiency, integrity, reliability, usability, correctness, maintainability, and

verifiability. A good goal was set for three factors: expandability, flexibility, and

interoperab ility.

The main conflict in quality goals, as indicated by Table 4.1.3-4, is between the

adaptation factors and efficiency. This conflict is important to note; however, it is not

critical because goals for adaptation factors are good and not excellent, and the

conflicting effect on efficiency is less. However, efficiency also conflicts with factors
assigned an excellent goal: integrity, reliability, usability, maintainability, and

verifiability; and the effect on efficiency is greater. This situation is critical and

requires action because achieving the initial set of goals is not possible.

4-35

...........

Table 4.1.3-5 Software Quality Factor Identification Form - Revised Goals

PERFORMANCE DESIGN ADAPTATION

E I R S U C M V E F IP R OEFRGA NRE

F N E U 5 0 A E X L N 0 E E -ECELLEfNT
F T L R A R I R P E T R U G -GOOD

I E I V B R N I A X E T S A .AVERAGE
SOFTWARE C G A I I E T F N I R A A BA.0 N'

QUALITY' a V L A I 0 B oB B
FACTO R E I I A I T I A A I P I I APPICMOABLE P.-

N T L B T N N B B L E L L. APIAL

SSSE0RSFAEC Y I I Y E A I I I A *CANGED
SYSTEM OR SOFTWARE- Y T i S B L L T A T T

UNIQUE Y I S I I I Y B 'Y Y
FUNCTION T L r T I

y I Y L
TI
Y T

Y

SURVEILLANCE AND IDENTIFICATION G* E E N/A E E E 6 G G N/A N/A

4-36

J1.

The most obvious action, and the action taken for the example system, is to require very

efficient processing hardware in order to alleviate the need for highly efficient software.

This enables lowering the efficieny goal from excellent to good. Although this does not

necessarily solve the problem, it changes the likelihood of achieving the goals from V

impossible to feasible.

These goals are established early in the system life cycle-at the same time that

technical performance and design requirements are being established for the whole

system. Thus, it is possible to increase efficiency requirements for processing hardware

based on needs established by software quality goals. However, only a limited amount of ..

efficiency is available from a given processor. Although the quality goal for efficiency

has been lowered, efficiency still conflicts with most of the other factors. Several

things might be done to ensure that overall goals can be met within budget constraints.

For example, processing efficiency most often depends on a small percentage of

software; high software efficiency goals could be assigned selectively to the software.

Key units would be assigned high goals and other units assigned lower goals with the

effect of satisfying overall efficiency requirements. Another possibility is to set quality

goals at the criteria level in favor of nonconflicting criteria. For example, generality (a

criterion of expandability) conflicts with three factors: efficiency, integrity, and

reliability; whereas augmentability (also a criterion of expandability) does not conflict

with any factor. A high quality goal can be assigned to augmentability and a lower goal

set for generality so that average criteria scores will satisfy the factor goal. Please

note that, although this technique will enable slightly higher scores for efficiency

through minimizing conflict, it will reduce software expandability. Techniques for

specifying criteria are explored in Section 4.2.

Table 4.1.3-5 shows the new set of quality goals for surveillance and identification. This

set resulted from the analysis of this step of the procedure. Only the goal for efficiency

was changed-from excellent to good-because of conflicts previously noted.

4-37

a .. .::... , :.-.. - ,, ,..,h,.,,* * :,,

.z.&*.~~W V~.. -M 1U *

3'%

Table 4.1.4-1 Life-Cycle Quality Costs/Benefits

Lle-yclA~ttyJSoftware Code and Unit
Acquisition Phase System/Software Requirements I Testing through Production

%Requirements Analysis through IOperational Testing and Product
Analysis Detailed Design and Evaluation Deployment Adaptation

Full Scale Development Production
Quality ftsDemonstration and C A and (tae.a eurd
Costs/Bfenef itsVlitonDpym t

Potential Costs

Specify Quality Requirements x x

Allocate Quality Requirements x x A

Design and implement for IX) x x
Quality

WEvaluate Achieved Quality x x x .

Potential Cost Benefits;

increased Quality Awareness X x x x X

Better Quality Products x x x x

Early Problem Detection W X)

Less Effort (X) x x

Note: ()wProject dependent

4-38 5

a
%3%

% ''j,'-. t r 3~~i~~% .:

0 , j

4.1.4 Consider Costs (Step 4)

In step 4, relative costs associated with specifying, designing, implementing, and
measuring quality are explored. Relative costs with respect to a single quality factor

are estimated for different parts of the life cycle, and the influence of factor

interrelationships on relative costs are considered. The purpose of considering relative

costs for factors is to enable a final decision on quality goals based on cost variations

estimated for the factors chosen. The purpose is not to estimate life-cycle costs.

When using software QM technology in acquiring a product, additional costs are

associated with specifying quality requirements, allocating those requirements to more

detailed levels of requirements and design, designing and building quality into the
product, and evaluating the quality level achieved for the product. There are also

potential benefits when using QM technology. Benefits include an increased awareness

of quality throughout the life cycle, higher quality products, early problem detection,

fewer problems or errors, and less effort. Although difficult to quantify, these benefits

are related to cost or cost avoidance. Costs and benefits will vary for different factors,r

different factor combinations, and different activities within the life cycle. Other

benefits are also possible, including reduced risk. Costs and benefits for system

acquisition phases are considered in the following paragraphs; details for each factor are

considered later in this step.

4.1.4.1 Life-Cycle Quality Costs and Benefits

Table 4.1.4-1 summarizes potential quality costs and benefits for three system S.

acquisition phases: demonstration and validation, full-scale development (FSD), and,.

production and deployment. Because these potential costs and benefits are related to

software, the software-related activities and phases are shown above the system

acquisition phases. FSD is shown in two parts to further distinguish costs and benefits.

A separate column is shown for adaptation of a product for a new use (e.g., expanded

requirements, new application); acquisition phases are repeated as necessary.

The following paragraph describes the potential costs and benefits for software activities

described in Table 4.1.4-1. Cost ranges for these activities are illustrated in Figure
4.1.4-1. Separate cost ranges are given for each factor. The cost ranges are from -3 to

4-39

. .. '....' ,..,'..'... ... ,..: : :'..'..'. -. '.. . " .. '..,'.. - ,. ' :. ,. ,I., ' ,. -

.''" . . ., , , , ., -' ,')L v" I -, .

PhatmA~u seo Full Scale Development i
"

Factor Demonstration &Validation CDR Production A&Deployment -,%

PERFORMANCE: + 2--

1+%.

Efficieny Avg 0// //////////
Cost

.3iL

3--

, Io .Avg 0.,

*3 %.

Relabiity Avg 4{/ J .S .", #/ P.
.3

rgm

U sabltem Aqusi0on

S.' Factorigr Demo1trtio Qult Valiatio LieCD cl Proucio £RDplgmets

% %~

0' -"A

.;', ":.' .,";.. ., , '.'.. ' '.' ' '... Efficiency" t .?. ." 5 ,..,5"- '. .,\. . " " ' .5\., "' ,. ',II, -.- 5'--...-,'. ;, c;.'''': '',., . ," I, ' - "":. ., , ' ,,'" ."."..;.-- :;'.,. .. _:

Syste Acquut~io

For eontato &Vliaio D Production I Deployuwn

Correctness AvWEf ~

-3-

.2-

~~~Maintainability Avg ______________________________________ __________

Verifiability Cot

4 ~Figure 4.1.4-1 Quality Factor Life-Cycle Cost Ranges (continued)t.

.:!.

* 4-41

.4 * . -.- * ,*** *

.. ~~ %~~ ~* h ~ ,. ~ VVVVV~



a%

Phase Full Scale Development

Demonstration &Production £(Product
Factor Validation CDR Deployment Adaptation)117

-p ADAPTATION:

Expandability Avg iI
Flexibility Cost Ip

.3
.2.-.

.3

Interoperability Avg '
Cost ~/

-1

Portability Avg 0

-31

Figure 4.1.4-1 Quality Factor Life-Cycle Cost Ranges (continued)

4-42-

% %.

Ap

-p, L'AL



+3 and are relative estimates based on additional quality activities that should be

performed and on some benefits that are obvious for individual factors. Only

software-related benefits are considered; other possible benefits (e.g., reduced risk,

reduced loss of aircraft, and reduced system maintenance time.) are not.

Baseline cost (average cost) shown in Figure 4.1.4-1 reflects cost if the quality factor

was not emphasized in the life cycle and only a nominal amount of quality was present.

For example, the level of quality present resulted only from project development

standards or from common practices of the development team. The cost ranges reflect

the assumption that only one factor has been specified (i.e., no positive or negative

interactions between factors). The effects of factor interactions with respect to cost

are explored later in this section. To relate relative cost ranges in Figure 4.1.4-1 to

costs for the project under consideration, estimate baseline cost for each acquisition

phase and baseline cost variations due to quality factors by examining the quality

considerations noted in the following paragraphs. A typical correlation would be that the

cost range values correspond to percentages of cost for an acquisition phase. For .
example, specifying a high efficiency level would add up to 1% of the total cost of
demonstration and validation for a command and control application. An example

calculation for cost variations is given later in this section.

a. Demonstration and Validation

During demonstration and validation, software quality reqUirements are identified,

specified, refined, and allocated to individual CSCIs. Early activities include
specifying quality goals, coordinating with interfacing organizations in determining

quality needs, and coordinating the consistency of quality requirements with

technical performance and design requirements. As further knowledge of the

system is gained, requirements, including software quality requirements, should be

reviewed and refined; and quality requirements which have been levied against

system-level functions and software-unique functions will be allocated to individual

CSCIs performing those functions. As specifications are released, quality metrics

are applied to the specifications, and the achieved quality level is assessed.

The cost range for all factors is from above zero to +1. Costs are likely to be on the

low end for small, simple projects and on the high end for large, more complex

projects for which quality requirements are more difficult to ascertain.

4-43

*9~~~~~' .-. .\ .V*.Q*.



The potential benefit at this stage is an increased awareness of software quality

considerations by using QM technology at the same time that technical requirements

are being examined. These activities can complement each other and result in a

comprehensive set of requirements and better quality software (and system)

products (e.g., requirements specifications). If this phase includes designing and

building a portion of the software and if quality requirements are also imposed on

this software, there are additional costs. These costs are more typical of those

incurred during FSD and are not reflected in the cost range estimates for this phase.

An added benefit from this activity is early problem detection.

b. Full-Scale Development-Pre-CDR

The pre-CDR portion of FSD includes the latter portion of the software

requirements analysis phase and the software design phases. During the latter

portion of software requirements analysis, quality requirements are allocated to

individual CSCIs and software functions and are checked for consistency with

technical performance and design requirements. During the design phases, software

quality requirements are allocated and assigned to successively lower design levels

(i.e., top-level design and detailed design). Specified quality factors are emphasized

in the design; and at each formal review when a software product is released,

metrics are applied to the products, and achieved quality is assessed.

The cost range for all factors, except correctness, is from +i to +2. Designing

quality into software is the major portion of additional cost. For correctness, the

cost range is from above zero to +1. For correctness, the cost range is less because

quality is not built into software-design emphasis is on completeness, consistency,

and traceability.

Potential benefits include continued increased awareness of quality considerations in

software design, higher quality products at each design stage, and early problemI' ,.

detection by applying metrics to each product.

c. Full-Scale Development-Post -CDR

During the post-CDR portion of FSD, quality metrics are applied to incremental

versions of software and to the final product. The cost range varies for different

factors.

4-44

[-> . J-."

4"' *.%.



211772. - : 
, 

7 - -..

The cost range for efficiency is from +Yi to +2. Efficient software tends to be more

error prone and more costly to verify.

The cost range for inteRrity is from above zero to +1Y. The additional code to

perform access dontrol and access auditing requires additional verification efforts.

The cost range for reliability and survivability is the same-from -1 (cost avoidance)

to +1Y2. Additional verification effort is required because of increased emphasis on

such things as accuracy, anomaly management, and reconfigurability. These

additional costs can be offset by fewer errors and by automated software response

to certain error conditions (because of emphasis on error handling and error L
avoidance during design).

The cost range for usability is from +Y2 to +2. Additional verification effort is

required because of increased emphasis on operability and I/O communicativeness.

The cost range for correctness is from below zero to -IY. Emphasizing correct
software during design results in fewer problems related to incompleted designs,

misinterpretation of requirements, and inconsistencies within the design. -

The cost range for maintainability and verifiability is from below zero to -1. Design

emphasis on verifiable, maintainable software reduces testing complexity and

simplifies locating and fixing errors.

The cost range for the adaptation factors expandability, flexibility, portability, and

reusability is from +Y2 to -1. Some characteristics such as generality and

augmentability add to the volume of code to be tested and increase the likelihood of

errors. This cost is offset by characteristics such as modularity, self-

re, descriptiveness, and simplicity, all of which simplify locating and fixing errors and

aid in incorporating software changes during testing.

L

The cost range for interoperability is from Y to +2. Additional effort is required to

verify software commonality and compatibility with interfacing systems..

4-45

. . . .* . . . . . . ..,, ,-, .- , ,,. .. .. " .- .- ,-... .. , . . , .- , . .. ... . . .. . . .-.-. ,.. ;.-..,..,. .... ,Z%.



Potential benefits during the post-CDR portion of FSD are an increased awareness

of quality considerations in software verification, higher quality software versions

during testing (advantages for individual factors are noted in the above paragraphs),

early problem detection by applying metrics, and fewer problems and errors because

of increased emphasis on quality. Another possible benefit is that less effort is

expended during this phase; this will depend on factor selection and on where actual

costs fall within the cost ranges. Still another possible benefit is reduced risk

because of greater emphasis on quality.

Production and Deployment

During production and deployment, the system is deployed into the field, and the

software begins operation and maintenance. Software-related activities include

operating the software, training personnel to use it, locating and fixing errors, and

incorporating small changes. (Major changes, new applications, and new

environments are considered under product adaptation.)

The cost range for efficiency is from above zero to +1. Highly efficient software

tends to be more error prone (e.g., tightly written code often lacks modularity and

tends to be more complex).

The cost range for integrity is from below zero to -1. Software with access

limitations is likely to have fewer failures.

The cost range for reliability and survivability is from -Y2 to -2. Reliable, survivable

software is likely to have fewer errors and failures.

The cost range for usability is from below zero to -1. Job time and duration of

training are likely to be less for usable software.

The cost range for correctness is from -1 to -3. Software with a high degree of

correctness is less likely to have problems related to incomplete designs,

inconsistencies within the design, and misinterpretation of requirements. These

problems can be expensive to correct after system deployment.

• .- 4- --- . . . . . . . . . . . .

g% %

• • .4-46

• I .-.: ' . " . . ,. " .' -. . ... -. o . . . -... ... ..... . . .. , .. . . . ., .,..-."= : , . . . .. - - ..'.%' . ' .



" The cost range for maintainability and verifiability is from below zero to -1.

Problems encountered after deployment are likely to be easier to locate and

solutions easier to verify if the software is verifiable and maintainable. (Note that 2
system maintainability usually includes the concept of improving the system by
changing or expanding it. These capabilities are provided through software

flexibility and expandability.)

The cost range for expandability and flexibility is from below zero to -2. Software

characteristics such as generality, modularity, self-descriptiveness, and simplicity

simplify locating and fixing errors, incorporating small changes into the software, ..-

and expanding basic software capabilities. Cost avoidance will vary depending on

the quantity of expected changes and/or expansions.

The cost -ange for interoperability is from below zero to -2. Interfacing software

with a system whose characteristics were known during development is simplified

considerably. Cost avoidance will vary depending on the quantity of expected

interfacing systems.

The cost range for portability and reusability is from below zero to -1. These
factors are usually associated with major changes to the basic system or with

redeployment of a new system that uses components from the original system; these .

are discussed under product adaptation. However, when most characteristics of

these factors are present, the tasks of maintaining the software and incorporating

small changes during production and deployment are simpler. Cost avoidance will

vary depending on the expected quantity of changes.

e. Product Adaptation

Product adaptation is intended to address major changes to the software of an

existing system for the same application, reuse of all or part of the software of an
existing system in a new application, use of the software of an existing system in a

new environment (i.e., hr.1dware or operating system) for the same or a similar

application, and converting the software of an existing system to interface with

software of another system (when interface requirements are unknown during the

development t-ycle). These efforts are all major changes to an existing system, and
it is assumed t:,at some or al! of the development phases will be repeated before

4-47 "'

-. . , . . . .. • . €. ,. ,. * -- . ., // ... . ... " ... " . - . . - . - . - - . % . . , . . -. sCa. -



* 71

Table 4.1.4-2 Cost Variations Calculation Form - Initial Estimate

L I C C E A T V T / S TSTEM 'SO; ARE SOFTW ARE REQUIRE MENTS CODE & UNIT TESTING PRODUCTION ANDACQUISITION PHASE/ REQUIREMENTS51 ANAL.YSIS THROUGH DETAILED THROUGH OPE RATIONAL DEPLOYMENT

DEMONSTRATION AND FULL SCALE DEVELOPMENT PRODUCTION AND
VALIATIO CDRDEPLOYMENT

GOAL % 10 15%70%

EFFICIENCY G 1+ +4 ++

INTEGRITY E + 1 +2 ++-

RELIABILITY E +.1 +2 ~ +-2

SURVIVABILITY N/A

USABILITY E 4 1 +2 +2 -1 7
-- CORRECTNESS E +I + 1 -3

*MAINTAINABILITY E + 1 + 2 +-1%

-VERIFIABILITY E . 1 +-++

EXPANDABILITY G 41 I 1j +-

FLEXIBILITY G + 1 41+ +1

INTEROPERABILITY G + 1+ *I .2

PORTABILITY N/A

REUSABILITY N/A

VARIATION TOTALS

A 4-48

tvj
.....................



production and deployment. Cost ranges for the performance and design quality

factors will be similar to those noted for FSD. Cost ranges for the adaptation

quality factors are noted in the product adaptation column. The cost ranges show

the potential for considerable savings when these qualities have been built into the

software.

4.1.4.2 Cost Variation Estimates . '-

At this point an initial estimate is made of cost variations for each factor, for each
acquisition phase. This initial estimate should consider each factor separately (i.e., do

not consider factor interactions). The effects of factor interactions will be considered

later in this section.

Table 4.1.4-2 shows software cost variations estimated due to quality factors assigned to

the surveillance and identification function of the example system. The purpose of

estimating cost variations is to view the total influence of quality factors over the

software life cycle. Estimates of software cost distribution over life-cycle phases

should be made and percentages entered on the form. Quality goals, (refined in step 3,

see Tbl. 4.1.3-5) should be entered next to the appropriate factor for easy reference.

Next, enter a cost variation estimate for each factor in each phase using Figure 4.1.4-1

and rationale described in the preceding paragraphs as guidelines.

Cost distribution for surveillance and identification software in the example system

follows the general cost trend for the total system: 5% of the total cost is in

demonstration and validation, 25% is in FSD-10% pre-CDR and 15% post-CDR, and 70%

is in production and deployment. Concept exploration costs were not considered; these

costs are normally a very small percentage.

Cost distribution for the example system is typical of current command and control

systems. Production and deployment costs usually range from 60% to 80% of the total.

Post-CDR costs are usually higher than pre-CDR costs for FSD.

The following paragraphs describe the rationale for cost variation entries by phase in

Table 4.1.4-2. These estimates are conservative. "1-.:

4-49

. . . . . .r ; .'. ' . .. ,' .....,,'''''". '''..... ., . .* 0"-.. "-" . '.-." - ." . •"- . . -.. . -- ''-. . .. •



a. Demonstration and Validation

The high end of the cost range, +1, was entered for each factor. This is a large,

complex project, and costs for specifying the software quality requirements are

likely to be independent of factor and goal level. In the example system, quality

goal requirements were not levied on any prototype software; there were no

additional quality-related costs.

, b. Full-Scale Development-Pre-CDR

Costs during this period are both factor and goal dependent. The rationale for all

entries was the same. If the goal is excellent, a value reflecting the high end of the

cost range was entered for that factor. For example, the goal for reliability is

excellent, and the top end of the cost range, +2, was entered. If the goal is good, a

- - value near the middle of the cost range was entered for the factor. For example, -.--.

the goal for efficiency is good and the middle of the cost range is IH; IY2 was

entered.

, c. Full-Scale Development-Post-CDR

Costs during this period are also factor and goal dependent. For factors with goals

of good, entries were made reflecting a value of near the middle of the cost range.

For integrity and usability, with goals of excellent, entries were made reflecting a

value at the top end of the cost range. For reliability, correctness, and

maintainability, with goals of excellent, entries were made reflecting a value near .

the middle of the cost range because fewer errors were likely.

d. Production and Deployment

Efficiency is the only factor showing additional costs for this period; all other

factors are below zero (cost avoidance). The entry for efficiency, with a goal of

good, was +Yz. Entries for other factors with goals of good reflected a value near
the middle of the (negative) cost range. Entries for factors with goals of excellent
were at the extreme of the (negative) cost range because the full benefits of high -...-,

* quality levels were expected.

Costs for product adaptation can also be estimated at this time because these costs may

influence the specified quality levels of certain factors.

.'.. 4-50 ""

* o . . . . . .



4.1.4~.3 Cost Effcsof FatrInterrelationships

o'.V

At this time, the effects of factor interrelationships on relative costs should be

considered, and the initial cost variation estimates should be refined. Factor interrela-

tionships have both positive and negative effects on cost just as they affect each other.

Figure 4.1.4-2 shows the relative cost effects of positive factor interactions. The cost

ranges shown are the same as those shown in Figure 4.1.4-1; arrows have been added for

the appropriate phases to indicate the direction of the effect of interactions.

Interrelationships among factors were summarized in Tables 2.2-2 and 4.1.3-1. The

following paragraphs summarize the effects on relative costs by acquisition phase.

a. Demonstration and Validation

During this phase, many activities require only a little more time to perform for

several factors as to perform for a single factor. For this reason, costs for an ',

individual factor tend to decrease as the number of factors increases.

b. Full-Scale Development-Pre-CDR

During this period, the primary positive effect is shared criteria among factors.

These characteristics are built into the software only once. The effect is reduced

cost for specified factors sharing criteria. Three factors-efficiency, integrity, and

usability-have no shared criteria. In the figure efficiency and integrity do not

indicate a possibility of cost reduction. Usability is shown with a possible reduced

cost range because of the positive effect of good anomaly management on reducing

efforts for providing operable software. All other factors share criteria and are

shown as having a possible cost-range reduction.

c. Full-Scale Development -Post -CDR

During this period, the primary positive effect is a reduced number of errors due to

high reliability, correctness, and maintainability and due to errors automatically

corrected by software with good anomaly management. All factors, except

correctness, are shown with a possible reduced cost range; correctness is not

affected by number of errors, and there is no additional effort associated with

correctness after the design phases.

4-51



Sstm PhaAqusl n Full Scale Development i }

Faco~
r 

,. j emostatin &ValdatonCDR Production & Deployment

?

PERFORMANCE: 2 -

E f f ic ie n c y C o s . -; 
"

costs

<nerty AgO Cotit,/////!//

.24

-3'

Avg 0

integrity Cost

SytmAqiiionr Full2CotEfecsoP scle DFvelopmenterltosi,. '"
..

77 M -

Surfiiency Ct5 t
-2I .

4 -5r 4-'

.3Vy

+2

Relability Avg 0-
- Surivablity Cos t

-3

-25

%3 4.,%,

. 2 1 _ _ _ _ _ _ _ _ _".

, ., . .. ... 11, - . . , - . , , . . .. . - . . . . .: . ., , - .. . , . . . , . ., . . . , '_, . .t> . .



.b

A 'I.

__ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ 4CorreCMS$ t

Sytem cquliionlul SaleDevloMn

+3-

Maintainability An FURT/,, '1, ME
Verifiability Cost 0,-

.3t

%:1

Figure 4.1.4-2 Cost Effects of Positive Factor Interrelationships (continued)

z..



System Acquisition
PhaseFull Scale Development

FatrDemonstration & Production &(Product
atoValidation CDR Deployment Adaptation)

M 11 if
EpADAAION: v ___________________________________________ i

anoeability Av 0

.3..

.3 . if TI '-

Portability Avg / 

.I.

Figure 4.1.4-2 Cost Effects of Positive Factor Interrelationships (continued)

4-54

>6K



1 . 1: - 4*1 7 ;; _ - J T __W

d. Production and Deployment

During this period, the primary positive effect is again a reduced number of errors.

All factors, except correctness, are shown with a possible reduced cost range for the

same reasons as noted in c.

e. Product Adaptation

Product adaptation is intended to address major changes to an existing system, and

it is assumed that some or all development phases will be repeated before

production and deployment. The positive effects on cost ranges for the performance

and design quality factors are the same as those described for the development

phases. All adaptation quality factors are shown with possible reduced cost ranges

in the product adaptation column for the same reasons as noted above.

Figure 4.1.4-3 shows the cost effects of negative factor interrelationships. The cost

ranges are the same as shown in Figure 4.1.4-1; arrows have been added to indicate the

direction of the effect of interactions. The following paragraphs summarize negative

effects on relative costs by acquisition phase.

a. Demonstration and Validation

No negative effects are shown for this phase because costs are predominantly

independent of factor.

b. Full-Scale Development -Pre -CDR

During this period, only usability, correctness, and interoperability are shown as

having no possible negative effect on the cost range because these are the only

factors having no possible conflict with other factors. All other factors are shown

as having a possible negative effect on cost range due to conflicts. '.-2-.

c. Full-Scale Development -Post -CDR

During this period, only usability, correctness, and interoperability are shown as

having no possible negative effect on cost range.

d. Production and Deployment

During this period, only usability, correctness, and interoperability are shown as

having no possible negative effect on cost range.

4-55

4 - 5 5. .-.. . 7...



Ig
System Acquisition Full Scale Development

Phase

Factor Demonstration & Validation CDR Production I Deployment

PERFORMANCE: +. . _ _ __ _ _

0* I '!!!11 */Ism= //w//fl///M '

Efficiency Avg O0

SCost

-2

integrity Avg
Cost F:-

-3
-3'

*2-

* Reliability Avg
Survivability Cost,

-1 L

.3

.z4-.-/;"

Usability Avg -

cos

• 
t:..2 t

I'..o

.4. Figure 4.1.4-3 Cost Effects of Negative Factor Interrelationships

p 4-56 -

',E .. ' . , N.: ., . .a -. - - - ........ ,.... .. . . .e .. " t- ':. . '. .. . ; ,

~rN*'4. '4%% ,-'4.t,*~-'4'4%

'4 .J. -'4.. -4--.- .. S4



V4?

hFull 
Scale Development

-2'

3"1
+3-

Manaiailt Av ME h // /// M-Of RI

Ventiab, lty cost 0.E 
j,.//, / // /y//, /.i]

Figurysem Ac14-quitEfecttoogaiv Fal clr Dnerelaetinhp (cniud

.4-57

%2 %

.5 4 .. , 

5

," ,r' ." . F igure " 4.1.4-"3 C ost. E ffect of " N e at v F actor'. h t "- ".e .t .io n s .h -". (continued) ,", . ,..,, t".', ,, •, ,. , .. . ,. ,,.4
,..4.

4
. . . ,: ;,..,, .r.



%

System Acquisition
P1 a. Full Scale Development I

Demonstratio Production & (Prodiuct
Factor Validation DeplomentAdpain

ADAPTATION: *
'4 ~ExoandabilityAg 4

Flexibility cost

A 3i

Pnorability Avg O
Reussility Cost , /

-2
+2..

-2~ 
. . *

6.0

4-58

% *



e. Product Adaptation

Product adaptation is intended to address major changes to an existing system, and
d.

it is assumed that some or all development phases will be repeated before

production and deployment. The negative effects on cost range for the performance

!.4 and design quality factors are the same as those effects for the development phases.

Only interoperability is shown as having no possible negative effect on cost range in

the product adaptation column.

Figure 4.1.4-3 considers only the effects of negative factor interrelationships. The

information in this figure reflects the assumption that complementary quality factors

(see sec. 4.1.2.4) have been specified where appropriate. If complementary factors have

* not been specified, further negative effects are possible.

o• Table 4.1.4-3 shows the cost variation estimates for surveillance and identification :

software of the example system. The estimates have been refined after considering

positive and negative interactions of specified factors, summarized in Table 4.1.3-4.

Rationale described in the preceding paragraphs was used for changing initial estimates.

Changes can be noted by an asterisk. The following paragraphs summarize refined

estimates by acquisition phase.

a. Demonstration and Validation

All entries were changed to Y2 because of the quantity of factors.

b. Full-Scale Development-Pre-CDR

Efficiency was raised to +2, the top end of the cost range, because of conflicts with

other factors. Usability, expandability, flexibility, and interoperability were

lowered by Y because of lack of conflict with other factors or shared criteria.

c. Full-Scale Development-Post -CDR

Efficiency was raised to +2 because the large number of conflicts with other factors

would more than offset any cost reduction due to fewer errors. Usability and

interoperability were reduced by Y2 due to the effects of fewer errors and lack of

conflicts.

4-59 ..-. '

[~~~.'"-... .'"".""--.."-'...'"" - ' '-""- -. -v ...... ..-.. H-..



.P: . 1 .- i '....-.

"* Table 4.1.4-3 Cost Variations Calculation Form - Refined Estimate

LIACQUI TIVITY/ SYSTEMSOFTWARE SOFTWARE REQUIREMENTS CODE & UNIT TESTING PRODUCTION AND

ACQUISITION PHASE/ REQuIREMENTS ANALYSIS THROUGH DETAILED THP )UGH OPERATIONAL DEPLOYMENTloTTALCOST""
TOA OTANA LYSIS DESIGN TESTING & EVALUATION '. ,Z

DEMONSTRATION AND FULL SCALE DEVELOPMENT PRODUCTION AND . -.

VALIATIO CDRDEPLOYMENT

GOAL % 10 15%70%

EFFICIENCY G +7 f 2 + 2 + .1

INTEGRITY E + +2 +1 -1

RELIABILITY E * .2 +7 -2

SURVIVABILITY N/A

USABILITY E + -2 'r 1 -1

CORRECTNESS E + + 1 -- -3 "

MAINTAINABILITY E +7 .2 -+ -1

VERIFIABILITY E " + 1

EXPANDABILITY G +7 *1 * - -1
FLEXIBILITY G + + 1 7 - -1

INTEROPERABILITY G + + 1 * + 1 -2

PORTABILITY N/A %

REUSABILITY N/A

VARIATION TOTALS 5 15- 4

4 CHANGED

4-60

%" 
% % %'"-

,.'-'. A,*



d. Production and Deployment

Efficiency was raised by Y due to the large number of conflicts with other

factors.

The variation totals are added for each column in Table 4.1.4-3. Potential costs are %

highest for the FSD pre-CDR period; potential cost savings (avoidance) are shown for

production and deployment. If variation totals are assumed to represent percentages of

costs for that phase, an overall cost savings of approximately 5% is projected for the

total life cycle ((0.05x1.05) + (0.l0xl.155) + (0.15xl.04)+ (0.70x0.885) = 0.0525 + 0.1155 +

0.156 + 0.6195 = 0.9435). This projected savings considers only software-related costs

and benefits; system-related cost avoidance has not been projected.

" Potential cost savings for product adaptation for a new use were not considered here.

" Although these types of costs and cost savings are outside the system life cycle, they

-.. may influence decisions on quality level for some factors and should be considered if J
possible.

4.1.4.4 Review of Quality Goals

At this time quality goals should be reviewed in light of life-cycle cost considerations of

this step and revised as necessary. Table 4.1.4-4 lists the final goals for the surveillance

and identification function of the example system. None of the goals were changed

(from Tbl. 4.1.3-5); however, cost limits were placed on the efforts for providing six of

the factors: efficiency, integrity, reliability, usability, maintainability, and verifiability.

These cost limits are primarily intended to limit the level of effort during design phases

when factor conflicts show the greatest effect.

Quality factor requirements should be specified quantitatively, as a value or value range,
and should reflect system and user needs and budget constraints. No industry standards

have been established, and judgement should be exercised when assigning values. Values

r: should not be unrealistically high because this situation can drain resources. However,

during the software development cycle, it is easier for the development contractor to

respond to lowering the goals than to raising the goals. We recommend using value

ranges and believe that the following ranges are realistic for a typical command and

control application: E-from 0.90 to 1, G-from 0.80 to 0.89, and A-from 0.70 to 0.79.

Higher ranges for selected factors may be appropriate in acquisitions involving space

* applications or nuclear armaments.

4-61



Table 4.1.4-4 Software Quality Factor Identification Form - Final Goals

PERFORMANCE DESIGN ADAPTATION

EI R S U C M V E F I P Rt NT0E FOR GOAL ENIhiS
F N E U S 0 A E X L. N 0 E EECELN
F T L R A R I ftp E T E U G.CELOD

I E I V B R IN I A X E T US -GO
C G A I I E T F N I Rt A A A.AVERAGE

SOFTWARE ftR B V L C A I B 0 9 BLANK 0(NIA.
QUALITY E II A I T I A A I P I NOT IMPORTANT ORNOT
FACTOR N T L, B T N N B B L. E L- L APPLICABLE

C y I I y E A I I I R I
SYSTEM OR SOFTWARE- Y T L 8 L L T A T T -COST LIMITS REQUIRED

NQUNIQUE y I I I I Y B y y
FUNCTION T L T T I

Y I Y y L.
T IY T

Y

SURVEILLANCE AND IDENTIFICATION G* E E' NIA E'I E P E G G G N/A N/A

Nr



* ... .I - ~7 'I-- ~

4.2 SELECT AND SPECIFY QUALITY CRITERIA

Select and specify quality criteria is the second of three procedures for identifying

software quality requirements (see Fig. 4.0-3). This procedure consists of three steps:

a. Select criteria.

b. Assign weighting formulas.

c. Consider interrelationships.

Steps I and 2 establish the relationships of criteria to factors. Step 3 considers the

feasibility of achieving quality factor goals established in Section 4.1 using these criteria

relationships.

4.2.1 Select Criteria (Step 1)

Step I of this procedure is to identify all criteria which are attributes of each factor for

which final goals were established in the previous procedure (see Sec. 4.1). Final goals
were established for 10 of the 13 quality factors for the example surveillance and
identification function (see Fig. 4.1.4-4). Use Table 3.2-1 to identify all criteria which
are attributes of each applicable factor. For example, there are three criteria for

reliability-accuracy, anomaly management, and simplicity.

4.2.2 Assign Weighting Formulas (Step 2)

Step 2 of this procedure is to assign a weighting formula for each applicable quality

factor. A weighting formula shows a specific relationship between the factor and its
attribute criteria; each criterion is assigned a weighting value to indicate its percentage

contribution to the overall factor goal. Table 4.2-1 lists the weighting formulas for
factors of the surveillance and identification example. The formula for reliability

indicates the percentage contribution of three criteria: accuracy-40%, anomaly

management -30%, and simplicity -30%.

Weighting formulas are significant when scoring and when specifying requirements.

When scoring, a criterion score is multiplied by the weighting value in calculating a

factor score. A higher weighting value places more emphasis on a high criterion score in
achieving the factor scoring goal. A lower weighting value places less emphasis on

4-63

VA.1,...'....-."... ....................



Table 4.2- Criteria Weighting Formula Form -Initial Weighting

Factor Weighting Formula

*(EFFICIENCY) =0. 1 (EC Q 0. 8 (E P) + 0. 1 (E S)

(INTEGRITY) =1.0 (SS)

* -(RELIABILITY) = 0.4 (AC) + 0.3 (AM) + 0.3 (SI)

(SURVIVABILITY) N/A = (AM) + (AU) + (DO) + (RE) + (MO)

(USABILITY) =0.5 (OP) + 0.5 (TN)

(CORRECTNESS) = 0.4 (CP) + 0.3 (CS) + 0.3 (TC)

(MAINTAINABILITY) = 0.2 (CS) + 0.2 (VS) + 0.2 (MO) + 0.2 (SD) +0.2 (SI)

(VERIFIABILITY) =0.25 (VS) + 0.25 (MO) + 0.25 (SD) + 0.25 (SI)

(EXPANDABILITY) = 0.2 (AT) + 0.2 (GE) + 0 (VR) + 0.2 (MO) + 0.2 (SD) +0.2 (SI)

(FLEXIBLITY) = 0.25 (GE) + 0.25 (MO) + 0.25 (SD) , 0.25 (SI)

-(INTE ROPE RAB ILITY) = 0.2 (CL) + 0.2 (FO) + 0.2 (ID) + 0.2 (SY) + 0.2 (MO)

*(PORTABILITY) N/A =(ID) + (MO) +t (SD)

(REUSABILITY) N/A =(AP) + (DO) + (FS) +(GE) +(ID) + (ST) +(MO) + (SD) + (5I)

NOTE: ()=Score

4-64



ww n. w w r . WV %'t I TS.I ''.-. , . . °

achieving a high criterion score. When specifying requirements, weighting values

indicate the amount of emphasis on a software characteristic (criterion) in developing

the product.

System goals and requirements should be reviewed when assigning weighting values, and

any significant system needs should be reflected in weighting formulas. Weighting

formulas in Table 4.2-1 show approximately equal weighting for most criteria. There are

two exceptions. Virtuality (an attribute of expandability) is weighted zero; this criterion

is primarily applicable to networks and was not considered appropriate for the example ,..

system. The criteria of efficiency are not weighted equally; processing effectiveness is

- weighted much higher than communication and storage effectiveness. For the

I surveillance and identification function, processing speed is far more critical than

communication speed and storage space.

% '4.2.3 Consider Interrelationships (Step 3)

Step 3 of this procedure considers the effect of positive and negative relationships

... " between criteria and factors on the feasibility of achieving quality factor goals. A .'-.

" negative relationship between a criterion and factor may affect the feasibility of

achieving a high enough criterion score to satisfy the factor scoring goal which reflects
the system needs. Adjusting the weighting formulas communicates to the developer

desired areas of emphasis and areas where compromises can be made in software

characteristics for the sake of achieving the overall factor goal.

Table 4.2-2 shows revised weighting formulas for the example surveillance and

identification function. Formulas have been revised for four factors: maintainability,

verifiability, expandability, and flexibility. Changes were based on the interrelationships

shown in Table 4.1.3-I and on rationale similar to that described in Table 4.1.3-3.

Generality is in conflict with three specified factors: efficiency, integrity, and

reliability. The weighting values for generality were lowered to 0.1 in the formulas for

expandability and flexibility. The message to the developer is that, although generality

is to be considered, lower scores will be tolerated because of significant conflicts.

Because weighting values for generality were lowered, weighting values for other

criteria must be increased. For expandability, the weighting value for augmentability

4-65

4A I. # , . , •. . °. °o ° - , .- . ** -.. .. *-. - = . •. . . * * .. - . • - . . • ° - . .

? * *~ * ~ * * *- ... .-. - "- ;. . .:.. ..- ..- .. . ....-.:. :-: .... . . .



Table 4.2-2 Criteria Weighting Formula Form - Revised Weighting

Factor Weighting Formula

(EFFICIENCY) =0. 1 (EC) + 0.8 (EP) + 0. 1 (ES)

(INTEGRITY) =1.0 (5S)

(RELIABILITY) = 0.4 (AC) + 0.3 (AM) + 0.3 (SI)

(SURVIVABILITY) N/A = (AM) + (AU) + (DI) + (RE) + (MO)

*(USABILITY) = 0.5 (OP) + 0.5 (TN)

*(CORRECTNESS) = 0.4 (CP) + 0.3 (CS) + 0.3 (TC)

(MAINTAINABILITY) = 0. 3 (CS) + 0. 4 (VS) + 0. 1 (MO0) +0.1* (S D) +0. 1 (SI1)

(VERIFIABILITY) = Q.4* (VS) + 0.2* (MO) + 0.2* (SD) + 0.2* (SI)

(EXPANDABILITY) = 0.3* (AT) + 0. 1 *(GE) + 0 (VR) + 0.2 (MO) + 0.2 (SD) +0.2 (SI)

(FLEXIBLITY) =0.1* (GE) + 0.3* (MO) + 0.3* (SD) + 0.3* (SI)

7, (INTEROPERABILITY) =0. 2 (CL) + 0. 2 (FO) + 0. 2 (I D) + 0. 2 (SY) + 0. 2 (MO0)

(PORTABILITY) N/A =(ID) + (MO) + (SD)

(REUSABILITY) N/A =(AP) + (DO) + (FS) + (GE) + (ID) +(ST) +(MO) . (SD) +(SI)

NOTE: ()=Score
= Changed

'

4-66



-.I-. ,.

was raised to 0.3 as this ig the only one of the five criteria with no conflicts. For

flexibility, weighting values for the other three criteria were raised to 0.3. Each is only
in conflict with efficiency; and the factor goal is only good.

Weighting formulas for maintainability and verifiability were modified to compensate for
conflicts of modularity, self-descriptiveness, and simplicity with the factor efficiency.
Weighting values were lowered for these three criteria and were raised for consistency

and visibility, which have no conflicts.

The revised set of weighting formulas communicate the needs of the system and user to -

the developer and incorporate special considerations based on the combination of quality

attributes selected.

_.3 SELECT AND QUALIFY QUALITY METRICS

Selecting and qualifying quality metrics is the third of three procedures for identifying
software quality requirements (see Fig. 4.0-3). In this procedure, specific metrics and

metric elements are selected to be used for evaluating achieved quality levels. Any
peculiarities of the system and application which affect metrics require qualification of
those metrics. This procedure should be performed by personnel familiar with the

application, the system, the software, software development methodology, and QM

technology.

This procedure consists of two steps:

a. Identify metrics.

b. Select and qualify metric elements.

.. 3.1 Identify Metrics (Step 1)

Step 1 is to identify all metrics which are attributes of each criterion which was assigned
a weighting value greater than zero in the previous procedure (see Sec. 4.2). The

applicable criteria for the surveillance and identification example are listed in Table

4.2-2. All attribute metrics can be identified using Table 3.3-1, which lists all metrics

- for each criteria.

4-6.7

,- - :,, .. ,..

.. ." , - . , ' -* . *; *."-" .. " ,'." . . -.- - -,' .-.. . ' ' ,. ' -" .,. -"-".-,- ',• .K.., .,



* . --- - -"5.,

4.3.2 Select and Qualify Metric Elements (Step 2)

Step 2 is to select specific metric elements which will be used for scoring system and

software products. Metric elements are listed in Appendix A on metric worksheets, in

question format. The questions are generally applicable to command and control

applications. Some questions may not be applicable to a specific command and control

application. When selecting metric elements, include system-unique and design-unique

considerations such as: -

a. Whether system processors are configured as a centralized processor distributed

. system, or network.

" b. Whether there is any parallel or concurrent processing.

c. Whether software is application or executive software.

All metrics and metric elements that are attributes of the weighted criteria in Table

4.2-2 were selected to be used for scoring the surveillance and identification example,

with the following qualifications:
a. Some of the anomaly management metric elements refer to capabilities that are

normally provided by executive software. These metric elements will only be used

for scoring software providing those capabilities. Any deletion of metric elements

will be determined after release of CSCI specifications to which requirements from

the surveillance and identification function have been allocated. This qualification

avoids restricting the allocation of technical requirements and allows for changes in

computing architecture (e.g., surveillance and identification function implemented in

a separate processor).

b. A separate training function (mission training) has been specified at the system level,

and some capabilities referred to in the training metric elements may not be provided

by software for the surveillance and identification function. All training metric

elements will be used in scoring software for the surveillance and identification
function. However, data collection personnel may need to refer to other source

material (e.g., documentation for software implementing the mission training -

function) to answer questions. This approach aids in ensuring that appropriate

4 capabilities are provided, since any deficiencies affect usability of software for 7....-..

surveillance and identification.
c. Efficiency metrics will be applied selectively to software elements. Scores for some

software elements may only be monitored and not used in factor scoring. Rationale L12

4 -68

- . *~ :-.'o-,.*4N°

".. .. .""* . .. " ", ." , " , '. , " " -. " " " '- ' . . . ., ,.. . " . . - . . - " " . . " - " , ... . .". -,"
*" • " ,- " -- " . '--." "" - * . ..- ,*. ... . " L 

' ° '
' ,' "" ' % '. ''% '% % .. . . . '." . ." °.' '



W.:.:':

for selecting software elements and applying these metrics will be determined prior

to software PDR.

When selecting metric elements do not not consider any system or design limitations,

such as:
a. Language capability limitations.

b. Documentation scheme limitations.

c. Lack of peripherals.

These limitations are by choice. Scoring should simply reflect the degree of presence of

a characteristic.

4.4 ASSESS COMPLIANCE WITH REQUIREMENTS

Assess compliance with requirements in the second of two processes for software quality

specification (see Fig. 4.0-1). The acquisition manager should perform this process near

the end of each software development phase, just prior to formal review. The purpose of

the process is to access compliance of development products with specified software

quality factor requirements in the system specification. Source materials are the

requirements specifications and Software Quality Evaluation Report (see App. C)

containing factor scoring and analyses for the development phase nearing completion and

scoring trends for the development cycle. Results of the manager's assessment are used

at the development review; action items may result.

The process consists of four procedures (see Fig. 4.0-4):

a. Review requirement allocations and evaluation formulas.

b. Review factor scores.

c. Review criteria scores.

d. Review metric, and metric element scores.

4.4.l Review Requirement Allocations and Evaluation Formulas

The purpose of this procedure is to determine the appropriateness of the allocation and

assignment of software quality factor requirements and of the derivation and use of

* evaluation formulas. Paragraph 3.2 of the Software Quality Evaluation Report describes

4-69

;



p .. -.4j

derivation of software quality evaluation formulas and allocation lists based on the

allocation of quality factor requirements to software elements (i.e., CSCIs and units).

This paragraph and the requirement specifications should contain sufficient information

to enable the acquisition manager to (1) trace the allocation of requirements to

applicable software elements and (2) check derived evaluation formulas and allocation

lists against requirement dilocations.

The following list of items may help determine appropriateness of requirement

allocations from a quality factor perspective. s edao

a. All software quality factor requirements should be allocated to at least one software

element.

b. Each software element to which software quality factor requirements have been

allocated should support the parent, system-level function.

c. Software elements to which software quality factor requirements have not been

allocated should not potentially affect the quality aspects specified for the parent,

system-level function.

d. The aggregate allocation of requirements should be complete and consistent with

respect to the overall system goals.

Evaluation formulas should simply reflect requirement allocations. All applicable

software elements should be included. Use of criteria, metrics, metric elements, and

criteria weighting should be consistent with specified requirements.

4.4.2 Review Factor Scores

The purpose of this procedure is to determine whether quality factor scores satisfy

factor goal requirements. Paragraph 3.4 of the Software Quality Evaluation Report

includes a comparison of quality factor scores with specified goals and an analyses of

variations. The acquisition manager should review this paragraph to determine whether

identified variations are acceptable. .

Scoring variations may be acceptable for several reasons. Metrics may have been

applied to a draft release of documentation or code; scores for the draft release may be

acceptable, provided that scores for the final release reflect correction of deficiencies. .

Quality factor requirements may be qualified by cost constraints, and scores may reflect

the highest possible score within budget constraints.

4-70

- % 0;\

O E M ",',, .. . ,,.' . . , ... , ,.. .. :A,, c C.. -, ........ , ... ,. .. ,. . . . ... ., . ,. . .,.. , .. . , ,..,..,. ,3 . . .-



- .J

Scoring should show an upward trend over the development cycle toward the target goal.
Paragraph 3.4 of the Software Quality Evaluation Report includes a scoring trend ,

analyses.

Unacceptable scoring variations should be explored. The acquisition manager should

review paragraphs 3.4 and 3.5 of the Software Quality Evaluation Report which include

scoring variation analyses and corrective recommendations.

If factor scores are unacceptably low, the cause should be investigated. Possible causes
include (1) unrealistic goals, (2) low quality products, and (3) biased scoring. If factor

goals are determined to be unrealistically high, the process of specifying quality factor

requirements should be repeated and new goals established. If low quality products or

biased scoring are suspected, criterion and metric scoring should be reviewed. These

reviews are discussed in subsequent sections.

If factor scores are unexpectedly high, the cause should also be investigated. Possible

causes include (1) unanticipated synergism among factors, (2) high quality products, and

(3) biased scoring. If synergism among factors is suspected, the process for specifying
quality factor requirements can be reviewed. High quality products and biased scoring

can be confirmed by reviewing criterion and metric scoring.

Factor scores should be reviewed and any scoring patterns identified. Consistently high

or low scoring could occur for one factor across software elements or could occur for
one software element across factors. Scoring patterns help identify the criteria and

software elements that should be reviewed to identify scoring variation causes.

4.4.3 Review Criteria Scores

The purpose of this procedure is to investigate possible causes of factor scoring. : -

variations through reviewing criteria scoring. Criteria-level scoring involves both the

score for the criterion and the weighting value assigned in the factor weighting formula.
", Weighting values used for scoring should be consistent with specified requirements. I.

Weighting values for each factor formulas should sum to 1.0. %

4-71

- ~ ~~~~ % .~~ .**



Criteria scores should be reviewed to identify scoring patterns. If a criterion score is

low for some CSCIs and not others, the cause could be conflict with a factor. This

"p. situation should have been anticipated during the specification process. Other scoring

patterns should be investigated by reviewing scores for attribute metrics.

4.4.4 Review Metric Scores

The purpose of this procedure is to investigate possible causes of factor scoring

variations through reviewing metric and metric element scoring. Possible causes of high

and low scores are product quality and biased scoring.

Scores can be biased by measurements of software characteristics that never or rarely

vary. Metric and metric element scores that are consistently low indicate a problem. If

scores are low across all software elements, the cause could be a design or
-" implementation technique widely used by the development contractor. Changing or

enforcing development standards can correct this situation. The cause could also be a
system or development limitation. For example, the language chosen may lack certain

capabilities or the documentation scheme may not provide adequate information. This

situation normally occurs by choice. Metric scoring shows which software

characteristics are lacking.

If metric and metric elements scores are low for only certain software elements (e.g.,

units), the likely cause is low quality for those elements. This can be confirmed by
reviewing the product. The cause could be practices by the development contractor.

Changing or enforcing development standards can correct this situation. ' -

If metric or metric element scores are consistently high (e.g., all scores are 1.0) over all

software elements, the measured software characteristic does not vary. This could be

the result of good development practices by the contractor or a feature of the chosen t -

language. If the score can never vary (e.g., because of an automatic feature of the

compiler), the metric or metric element should be dropped. If the score varies but is

significantly higher than other scoring, consider continuing to monitor the metric score

but not using that score in factor calculations. Any low scoring would still be visible, but

consistently high scoring would not bias results.

4-72

a.- ",

,.........., ..... L



one we 1 . -.4.

If metric or metric element scores are high for only certain software elements (e.g.,

units), the likely cause is high quality for those elements. This can be confirmed by

reviewing the product. '

Visibility is perhaps the most significant benefit of reviewing quality scores. A small

variation in the range of scoring values (e.g., 0.5 vs 0.7) may not be as significant as the

total scoring picture. By using QM technology, the acquisition manager can periodically

view the total product from the perspective of any quality attribute that has been

measured. And desired changes can be communicated to the development contractor.

Scoring results help in identifying deficiencies and enable corrective action early in the

development cycle. Individual scores can vary because judgement is exercised when

collecting data. The total perspective provided by the aggregate of scoring results helps -

minimize the significance of any human element.

,o* .5.

4-73

.......... ........ 4........................... . ....... ..'. .. .. ..
,-.- . , .. - .. . 5- ./ . ..- . ... .... -. °. - .-, .. .. ..... , , -, ' .. .. . .. . .. ._. .. .,. , -,- .... . .,, . . ,



APPENDIX A

METRIC WORKSHEETS

(Trhe contents of this appendix are in Vol. 111, App. A.)

A-1

h i~t-.-A



)L

-~ APPENDIX B

FACTOR SCORESHEETS

(The contents of this appendix are in Vol. 111, App. B.)

B-13

.3.<



* *

APPENDIX C

SOFTWARE QUALITY EVALUATION REPORT

-i Appendix C contains the specification of format and content for the Software Quality r
Evaluation Report document. Information is in data item description (DID) format. L.
The Software Quality Evaluation Report is used to describe results of metric data

collection and analysis.

C--V

y*.N ,

VA2'

.S-,.

C -.I .5., . . ... ..- . ., . .. .... .. .. . .. , ; . .... ,:, . ,,., ., .,, . , ., . ,=. . .'--



-.
V e.

-4. ', -.

-. - . -

-,-.%'i

DATA ITaEM DEIcIPI0Nn oo'',ocrow,,s "

NSoftware Quality Evaluation Report USAF.-"-

The software quality evaluation report contains a quanti-
tative assessment of achieved software quality factor 6. o,,,eeo,,
levels for products released at incremental points during
the software development cycle. This report is used by .-_.-'.

the Air Force to track quality levels and to assess corn- .
pliance with quality factor requirements in specification!

o,. APPOOVATI n.,ntSATOa0t o" .o

The software quality evaluation report describes the re-
sults of metric data collection and analyses. A report _ ___'-"

is normally prepared near the end of each software devel- .

opment phase. Each report should contain metric data and
data analyses to address each software quality factor
requirement specified in the system requirements spec-
ification.

1. General Requirements. The software quality evaluation report shall describe '
results of metric data collection and analyses. Data analyses information shall .
include correlation of metric scores to factor scores for each software quality
factor requirement. Raw metric scores and factor scoring trends shall be included.

2. Detailed Requirements. For convenience in describing the minimum essential
content, the following paragraphs show a normal format for presentation of materi-
al. In the following description, paragraph headings and numbers indicate the
general nature of the topic and are minimum mandatory requirements.

a. Section 1.0 - Introduction. This section shall describe the purpose
and scope of the report.

b. Section 2.0 - References. This section shall list both government and
non-government references and shall include identification of system/software -7
products used as source material for metric data collection.

c. Section 3.0 - Software Quality Evaluation Data. This section shall
describe detailed results of metric data collection and analyses and shall identifl
variations from software quality requirements.

(1) Paragraph 3.1 - Product Source Material. This paragraph shall de-

scribe the software development phase and system/software products used as source
-material for collecting metric data."" ~DD ,-"1664 ,.oo.,. ,,, ,,

.4C

*.,.-4 • .""" ":""." "" "". .'" tv. :.... , -.....- ,- .,,...-,.,,-,,4....,., .~ .. ,-.:.... 4.'.:.,..,,< , _ .-.-,..

,' , .. 4, ".- • , . "' .,.,~ . •*. '



Software Quality Evaluation Report

(2) Paragraph 3.2 - epulrement Allocation Relationships. This
paragraph shall identify and describe the derivation of relationships used
for scoring based on the allocation of quality factor requirements to soft-
ware elements (CSCIs and units). Formulas and lists should be used. For
example, Qsfl a (Qfl + Qf2 + ... + Qfn)/N, where:

QsfI is the quality factor score for system-level function 1,
Qf1 is the quality factor score for software element 1,
Qf2 is the quality factor score for software element 2.

adQfn is the quality factor score for software element n.

one formula is required for each software quality factor of each system-level
function for which software quality factor requirements have been specified.
This paragraph shall also identify the specific relationships (criteria and
metrics to factors) which were used to calculate software quality factor
scores.

-C...(3) Paragraph 3.3 - Data Collection. This section shall describe
results of metric data collection and reduction and shall include descriptions
of:

(a) Selection and use of metric worksheets to collect metric
element data.

(b) Selection and use of metric scoresheets to compute
metric scores, criterion scores and factor scores.

(4) Paragraph 3.4 - Data Anal ~ses. This section shall describe
results of metrics data analyses and shall include descriptions of:

(a) Computation of quality factor scores for each system-
level function.

(b) Comparison of metric scoring with specified quality
factor requirements (goals) and analyses of variations from requirements.
Causes and remedies shall be explored for each variation.

(c) Trend analyses, showing software quality factor scoring
trends with respect to software development phases.

(5) Paragraph 3.5 -Recommendations. This paragraph shall pro-
vide the following:

(a) Explanations and rationale for scoring variations.
(b) Recommendations for correcting scoring variations.

Page 2 of 3

C-3 *

• ... .. . . . . . . . . . . . . . .



o,.1,*

,'..-;

Software Quality Evaluation Report

d. Appendix A - Summary Information. This section shall be included
as an appendix to the software quality evaluation report. It shall include
textual and pictorial material to elaborate and refine material presented in
section 3, Software Quality Evaluation Data. These items shall include tabu-
lhr representations of:

(1) Software quality factor requirements allocation to software
elements.

(2) A comparison of software quality factor scoring with speci-
fied requirements.(3) Quality Criteria scoring for each factor., '

(4) Quality Metric scoring for each criteria.

e. Appendix B - Factor Scoresheets. This section shall be included
as an appendix to the software quality evaluation report. It shall contain
the scoresheets with scores for all applicable factors, criteria, metrics,
and metric elements.

f. Appendix C - Metric Worksheets. This section shall be included
as an appendix to the software quality evaluation report. It shall contain
the metric worksheets with answers to all applicable etric element questions.

Page 3 of 3

C-4
•2.

i S



MISSION
* Of

Roim Air Development Center
RA19C p.tn6 and executeA Aeaeouh, deveLopment, te~t and
&6etected acqwLisition ptogam in.6uppo~t oj Commaind, Conb~oL

* Corunincation and IntdUgence (C31)I atvieA. Tecknicat -

and enginee'ing .5uppa4t within ateaA o6 technLcaL competencze
.Lh p'Lou.ded -to ESP Ptog'tam O06jica (POh6) and otheL ESV
etenenA. The ptincipat technicat mi,6sdon a/Leah axLe
comnmunicationa, etec.tomanetic guidance and contLot, 6uxL-
veii-tance o6 g,%ound and dVWo47ace object6, intettgence data
cottection and handting, inA'aotion ay.6tem tecknoogy,
iono,6pheAic p4opagatA on, 6oti~d 6tate .6cAenceA, minaokwae
phytica and etectonite 4etiabi&.ty, ma.nta-nabtW.4 and
earnpatibiZty.



ITI


